Skip to main content

Investigating in Situ Natural Genetic Transformation of Acinetobacter sp. BD413 in Biofilms with Confocal Laser Scanning Microscopy

  • Chapter
Genetic Engineering: Principles and Methods

Part of the book series: Genetic Engineering: Principles and Methods ((GEPM,volume 26))

Abstract

Natural genetic transformation is defined as the active uptake of free DNA, released in the environment through lysis or excretion, by bacterial strains that are naturally competent for transformation. It has been observed in a wide range of organisms (1). Of the three horizontal gene transfer processes — transformation, conjugation, and transduction — natural genetic transformation has the least requirements (1). For instance, there is no need for the donor cell to be alive or physically intact. Spatial and temporal separation between competent cells and the source of DNA in the environment can be overcome since nucleic acids are often found adsorbed to minerals (2), humic acids (3) or other components (1), where they are shielded from DNase attack. Consequently, DNA that survives can potentially be used for natural genetic transformation of recipient cells if those cells possess the ability to change into a state conferring competence for transformation (1). The process of transformation has been divided into the following steps (1,4,5): (i) release of DNA from cells; (ii) dispersal and (iii) persistence of the DNA in the environment; (iv) the development of competence for DNA uptake by cells in the natural habitat; (v) the interaction of cells with DNA and the uptake of DNA; and (vi) the expression of an acquired trait following DNA uptake (1).

“REALISM, n., The art of depicting nature as it is seen by toads. The charm suffusing a landscape painted by a mole, or a story written by a measuring worm.”

Ambrose Bierce (1842–1914), American journalist In ‘The Devils Dictionary’, 191

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lorenz, M.G. and Wackernagel, W. (1994) Microbiol. Rev. 58, 563–602.

    PubMed  CAS  Google Scholar 

  2. Gallon, E., Bazzicalupo, M., Dal Canto, L., Fani, R., Nannipieri, P., Vettori, C. and Stotzky G. (1994) FEMS Microbial. Ecol. 15, 119–126.

    Article  Google Scholar 

  3. Tsai, Y.L. and Olson, B.H. (1992) Appl. Environ. Microbiol. 58, 2292–2295.

    Google Scholar 

  4. Wackernagel, W., Romanowski, G. and Lorenz, M.G. (1992) in The Release of Genetically Modified Microorganisms (D.E.S. Stewart-Tull and M. Sussman, eds.), pp. 171–174. Plenum Press, New York, NY.

    Book  Google Scholar 

  5. Yin, X.M. and Stotzky, G. (1997) Adv. Appl. Microbiol. 45, 153–212.

    Google Scholar 

  6. Palmen, R.K. and Hellingwerf, K.J. (1995) Curr. Microbiol. 30, 7–10.

    Article  PubMed  CAS  Google Scholar 

  7. Juni, E. (1978) Ann. Rev. Microbiol. 32, 349–371.

    Google Scholar 

  8. Bauman, P., Doudoroff, M. and Stanier, R.Y. (1968) J. Bacteriol. 95, 1520–1541.

    Google Scholar 

  9. Benndorf, D., Loffhagen, N. and Babel, W. (2001) FEMS Microbiol. Lett. 200, 247–252

    Article  PubMed  CAS  Google Scholar 

  10. Bode, H.B., Kerkhoff, K. and Jendrossek, D. (2001) Biomacromolecules 2, 295–303.

    Article  PubMed  CAS  Google Scholar 

  11. Pleshakova, E.V., Muratova, A.Y. and Turkovskaya, O.V. (2001) Appl. Biochem. Microbiol. 37, 342–347.

    Google Scholar 

  12. Lawrence, J.R., Korber, D.R., Hoyle, B.D., Costerton, J.W. and Caldwell, D.E. (1991) J. Bacteriol. 173, 6558–6567.

    PubMed  CAS  Google Scholar 

  13. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. and LappinScott. H.M. (1995) Annu. Rev. Microbiol. 49, 711–745.

    Google Scholar 

  14. Strathmann, M., Wingender, J. and Flemming, H.C. (2002) J. Microbiol. Methods 50, 237–248.

    Google Scholar 

  15. van Loosdrecht, M.C.M., Picioreanu, C. and Heijnen, J.J. (1997) FEMS Microbiol. Ecol. 24, 181–183.

    Article  Google Scholar 

  16. Lawrence, J.R. and Neu, T.R.. (1999) Meth. Enzymol. 310, 131–144.

    Article  PubMed  CAS  Google Scholar 

  17. O’Toole, G.A., Kaplan, H.B. and Kolter, R. (2000) Annu. Rev. Microbiol. 54, 49–79.

    Google Scholar 

  18. Watnick, P. and Kolter, R. (2000) J. Bacteriol. 182, 2675–2679.

    Article  PubMed  CAS  Google Scholar 

  19. Bishop, P.L. (1997) Wat. Sci. Technol. 36, 287–294.

    Google Scholar 

  20. Flemming, H.-C. (1995) Wat. Sci. Technol. 32, 27–33.

    Google Scholar 

  21. Späth, R., Flemming, H.-C. and Wuertz, S. (1998) Wat. Sci. Technol. 37, 207–210.

    Google Scholar 

  22. James, G.A., Beaudette, L. and Costerton, J.W. (1995) J. Ind. Microbiol. 15, 257–262.

    Google Scholar 

  23. Lewis, K. (2001) Antimicrob. Agents Chemother. 45, 999–1007.

    Article  PubMed  CAS  Google Scholar 

  24. Roberson, E.B. and Firestone, M.K. (1992) Appl. Environ. Microbiol. 58, 1284–1291.

    Google Scholar 

  25. Hausner, M., and Wuertz, S. (1999) Appl. Environ. Microbiol. 65, 3710–3713.

    Google Scholar 

  26. Hendrickx, L., Hausner, M. and Wuertz, S. (2003) Appl. Environ. Microbiol. 69, 1721–1727.

    Google Scholar 

  27. Ghigo, J.M. (2001) Nature 412, 442–445.

    Article  PubMed  CAS  Google Scholar 

  28. Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C. and Mattick, J.S. (2002) Science 295, 1487.

    Article  PubMed  CAS  Google Scholar 

  29. Loo, C.Y., Corliss, D.A. and Ganeshkumar, N. (2000) J. Bacteriol. 182, 1374–1382.

    Article  PubMed  CAS  Google Scholar 

  30. Kang, Y., Liu, H., Genin, S., Schell, M.A. and Denny, T.P. (2002) Mol. Microbiol. 46, 427–437.

    Article  PubMed  CAS  Google Scholar 

  31. Palmen, R., Vosman, B., Buijsman, P., Breek, C.K.D. and Hellingwerf, K.J. (1993) J. Gen. Microbiol. 139, 295–305.

    Google Scholar 

  32. Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L. and Lukyanov, S.A. (1999) Nature Biotechnol. 17, 969–973.

    Article  CAS  Google Scholar 

  33. Heydorn, A., Ersboll, B.K., Hentzer, M., Parsek, M.R., Givskov, M. and Morin, S. (2000) Microbiology 146, 2409–2415.

    PubMed  CAS  Google Scholar 

  34. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. (1994) Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  35. Prasher, D.C. (1995) Trends Genet. 11, 320–323.

    Article  PubMed  CAS  Google Scholar 

  36. Heim, R., Prasher, D.C. and Tsien, R.Y. (1994) Proc. Nat. Acad. Sci. U.S.A. 91, 12501–12504.

    Google Scholar 

  37. Mizuno, H., Sawano, A., Eli, P., Hama, H. and Miyawaki, A. (2001) Biochemistry 40, 2502–2510.

    Article  PubMed  CAS  Google Scholar 

  38. Cho, J.C. and Kim, S.J. (1999) FEMS Microbiol. Lett. 170, 257–264.

    Article  PubMed  CAS  Google Scholar 

  39. Ellenberg, J., Lippincott-Schwartz, J. and Presley, J.F. (1999) Trends Cell Biol. 9, 52–56.

    Article  PubMed  CAS  Google Scholar 

  40. Cowan, S.E., Gilbert, E., Khlebnikov, A. and Keasling, J.D. (2000) Appl. Environ. Microbiol. 66, 413–418.

    Google Scholar 

  41. Wuertz, S., Hendrickx, L., Kuehn, M., Rodenacker, K. and Hausner, M. (2001) Meth. Enzymol. 336, 129–143.

    PubMed  CAS  Google Scholar 

  42. Maksimow, M., Hakkila, K., Karp, M. and Virta, M. (2002) Cytometry 47, 243–247.

    Article  PubMed  CAS  Google Scholar 

  43. Nancharaiah, Y.V., Wattiau, P., Wuertz, S., Bathe, S., Mohan, S V, Wilderer, P.A. and Hausner, M. (2003) Appl. Environ. Microbiol. 69, 4846–4852.

    Google Scholar 

  44. Fuller, M.E., Streger, S.H., Rothmel, R.K., Mailloux, B.J., Hall, J.A., Onstott, T.C., Fredrickson, J.K., Balkwill, D.L. and DeFlaun, M.F. (2000) Appl. Environ. Microbiol. 66, 4486–4496.

    Google Scholar 

  45. Hendrickx, L., Hausner, M. and Wuertz, S. (2000) Wat. Sci. Technol. 41, 155–158.

    Google Scholar 

  46. Geisenberger, O., Ammendola, A., Christensen, B.B., Molin, S., Schleifer, K.-H. and Eberl, L. (1999) FEMS Microbiol. Lett. 174, 9–17.

    Article  PubMed  CAS  Google Scholar 

  47. Doten, R.C., Ngai, K.-L., Mitchell, D.J. and Ornston, L.N. (1987) J. Bacteriol. 169, 3168–3174.

    PubMed  CAS  Google Scholar 

  48. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual., 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  49. Tsien, R.Y. (1998) Annu. Rev. Biochem. 67, 509–544.

    Google Scholar 

  50. Kuehn, M., Hausner, M., Bungartz, H.-J., Wagner, M., Wilderer, P. A. and Wuertz, S. (1998) Appl. Environ. Microbiol. 64, 4115–4127.

    Google Scholar 

  51. Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D. and Caldwell, D.E. (1994) Can. J. Microbiol. 40, 331–340.

    Article  PubMed  CAS  Google Scholar 

  52. Caldwell, D.E., Korber, D.R. and Lawrence, J.R. (1992) Adv. Microbial. Ecol. 12, 1–67.

    Google Scholar 

  53. Hartmann, A., Lawrence, J.R., Aßmus, B. and Schloter, M. (1998) Mol. Microbial. Ecol. Manual 4, 1–34.

    Google Scholar 

  54. Endow, S.A. and Piston, D.W. (1998) in Green Fluorescent Protein: Properties, Applications, and Protocols (M. Chalfie and S.Kain, eds.) pp. 271–298 Wiley-Liss, Inc.

    Google Scholar 

  55. Korber, D.R., Lawrence, J.R., Hendry, M.J. and Caldwell, D.E. (1992) Binary 4, 204–210.

    Google Scholar 

  56. Wipat, A., Wellington, E.M.H. and Saunders, V.A. (1992) in Genetic Interactions among Microorganisms in the Natural Environment (E.M.H. Wellington and J.D. Van Elsas, eds.) pp. 83–90, Pergamon Press Ltd.

    Google Scholar 

  57. Moter, A. and Göbel, U.B. (2000) J. Microbiol. Meth. 41, 85–112.

    Google Scholar 

  58. Ray, A. and Nordén, B. (2000) FASEB J. 14, 1041–1060.

    CAS  Google Scholar 

  59. Cresswell, N. and Wellington, E.M.H. (1992) in Genetic Interactions among Microorganisms in the Natural Environment (E.M.H. Wellington and J.D. Van Elsas, eds.) pp. 59–81, Pergamon Press Ltd.

    Google Scholar 

  60. Pickup, R.W. (1992) in Genetic Interactions among Microorganisms in the Natural Environment (E.M.H. Wellington and J.D. Van Elsas, eds.) pp. 145–163, Pergamon Press Ltd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hendrickx, L., Wuertz, S. (2004). Investigating in Situ Natural Genetic Transformation of Acinetobacter sp. BD413 in Biofilms with Confocal Laser Scanning Microscopy. In: Setlow, J.K. (eds) Genetic Engineering: Principles and Methods. Genetic Engineering: Principles and Methods, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48573-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48573-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3460-4

  • Online ISBN: 978-0-306-48573-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics