Skip to main content

Principles of Targeted Mutagenesis in the Moss Physcomitrella Patens

  • Chapter
New Frontiers in Bryology

Abstract

Highly efficient gene targeting is a unique feature of the moss Physcomitrella patens. It is now possible, in a multicellular eukaryote, to use the gene replacement technology which has been so successful in yeast. Careful design of transforming vector is nevertheless a key to successful generation of targeted plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, G.M., Scheerer, J.B,. Brotherman, A., McConville, S., Wilson, J.H., & Nairn, R.S. (1998) Targeted recombination at the Chinese hamster APRT locus using insertion versus replacement vectors. Somatic Cell & Molecular Genetics 24, 91–105

    CAS  Google Scholar 

  • Bouche, N., & Bouchez, D. (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol. 4, 111–117

    CAS  Google Scholar 

  • Chakhparonian, M. (2001) Développement d’outils de la mutagenèse ciblée par recombinaison homologue chez Physcomitrella patens. PhD thesis. Université de Lausanne, Switzerland “http://www.unil.ch/lpc/docs/

  • Cormack, R.S., & Somssich, I.E. (1997) Rapid amplification of genomic ends (RAGE) as a simple method to clone flanking genomic DNA. Gene 194, 273–276

    Article  PubMed  CAS  Google Scholar 

  • Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., Andre, B., Arkin, A.P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtis, M., Davis, K., Deutschbauer, A., Entian, K.D., Flaherty, P., Foury, F., Garfinkel, D.J., Gerstein, M., Gotte, D., Guldener, U., Hegemann, J.H., Hempel, S., Herman, Z., Jaramillo, D.F., Kelly, D.E., Kelly, S.L., Kotter, P., LaBonte, D., Lamb, D.C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S.L., Revuelta, J.L., Roberts, C.J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D.D., Sookhai-Mahadeo, S., Storms, R.K., Strathern, J.N., Valle, G., Voet, M., Volckaert, G., Wang, C.Y., Ward, T.R., Wilhelmy, J., Winzeler, E.A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J.D., Snyder, M., Philippsen, P., Davis, R.W., & Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391

    Article  PubMed  CAS  Google Scholar 

  • Hohe, A., & Reski, R. (2003) A tool for understanding homologous recombination in plants. Plant Cell Rep. 21, 1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Holtorf, H., Guitton, M.C., & Reski, R. (2002) Plant functional genomics. Naturwissenschaften 89, 235–249

    Article  PubMed  CAS  Google Scholar 

  • Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., An, K., Han, M.J., Sung, R.J., Choi, H.S., Yu, J.H., Choi, J.H., Cho, S.Y., Cha, S.S., Kim, S.I., & An, G. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant Journal 22, 561–570

    Article  PubMed  CAS  Google Scholar 

  • Kammerer, W., & Cove, D.J. (1996) Genetic analysis of the result of re-transformation of transgenic lines of the moss, Physcomitrella patens. Mol. Gen. Genet. 250, 380–382

    PubMed  CAS  Google Scholar 

  • Mengiste, T., & Paszkowski, J. (1999) Prospects for the precise engineering of plant genomes by homologous recombination [Review]. Biol. Chem. 380, 749–758

    Article  PubMed  CAS  Google Scholar 

  • Müller, U. (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis [Review]. Mech. Devel. 82, 3–21

    Article  Google Scholar 

  • Nishiyama, T., Fujita, T., Shin, I.T., Seki, M., Nishide, H., Uchiyama, I., Kamiya, A., Carninci, P., Hayashizaki, Y., Shinozaki, K., Kohara, Y., & Hasebe, M. (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc. Natl. Acad. Sci. U. S. A. 100, 8007–8012

    Article  PubMed  CAS  Google Scholar 

  • Ow, D.W. (2002) Recombinase-directed plant transformation for the post genomic era. Plant Mol. Biology 48, 183–200

    Article  CAS  Google Scholar 

  • Paques, F., & Haber, J.E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae [Review]. Micro. & Mol. Biol. Reviews. 63, 349–404

    CAS  Google Scholar 

  • Parinov, S., & Sundaresan, V. (2000) Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project [Review]. Curr. Opin. Biotech. 11, 157–161

    Article  PubMed  CAS  Google Scholar 

  • Puchta, H. (1998) Towards targeted transformation in plants. Trends in Plant Science 3, 77–78

    Google Scholar 

  • Puchta, H. (2002) Gene replacement by homologous recombination in plants. Plant Mol. Biol. 48, 173–182

    Article  PubMed  CAS  Google Scholar 

  • Rensing, S.A., Rombauts, S., Van de Peer, Y., & Reski, R. (2002) Moss transcriptome and beyond. Trends in Plant Science 7, 535–538

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, R. (1991) Targeting, disruption, replacement and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194, 281–301

    Google Scholar 

  • Sakakibara, K., Nishiyama, T., Sumikawa, N., Kofuji, R., Murata, T., & Hasebe, M. (2003) Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. Development 130, 4835–4846

    Article  PubMed  CAS  Google Scholar 

  • Sauer, B. (1993) Manipulation of the transgene by site-specific recombination: use of cre recombinase. Methods Enzymol. 225, 890–900

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, D.G. (1994) Molecular genetic approaches to the biology of the moss Physcomitrella patens. PhD Thesis. University of Lausanne, Switzerland “http://www.unil.ch/lpc/docs/DSThesis.htm

  • Schaefer, D.G. (200 1) Gene targeting in Physcomitrella patens. Curr. Opin. Plant Biol. 4, 143–150

    Google Scholar 

  • Schaefer, D.G. (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53, 477–501

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, D.G., & Zryd, J-P. (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195–1206

    CAS  Google Scholar 

  • Schaefer, D.G., & Zrÿd, J-P. (2001) The moss Physcomitrella patens now and then. Plant Phys. 127, 1430–1438

    Article  CAS  Google Scholar 

  • Schaefer, D.G., Zrÿd, J-P., Knight, C.D., & Cove, D.J. (1991) Stable transformation of the moss Physcomitrella patens. Mol. Gen. Genet. 226, 418–424

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schaefer, D., Zrÿd, JP. (2004). Principles of Targeted Mutagenesis in the Moss Physcomitrella Patens . In: Wood, A.J., Oliver, M.J., Cove, D.J. (eds) New Frontiers in Bryology. Springer, Dordrecht. https://doi.org/10.1007/978-0-306-48568-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48568-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6569-8

  • Online ISBN: 978-0-306-48568-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics