Advertisement

Keywords

Modular Form Double Coset Hankel Operator HANKEL Matrix Hankel Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fomenko, A.T., and Matveev, S.V.: Algorithmic and computer methods for three-manifolds, Kluwer Acad. Publ., 1997.Google Scholar
  2. [2]
    Haken, W.: ‘Theorie der Normal Flächen I’, Acta Math. 105 (1961), 245–375.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Thurston, W.: ‘Three-dimensional manifolds, Kleinian groups and hyperbolic geometry’, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357–381.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Waldhausen, F.: ‘On irreducible 3-manifolds which are sufficiently large’, Ann. of Math. 87 (1968), 56–88.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Waldhausen, F.: ‘The word problem in fundamental groups of sufficiently large irreducible 3-manifolds’, Ann. of Math. 88 (1968), 272–280.CrossRefMathSciNetGoogle Scholar

References

  1. [1]
    Bergelson, V.: ‘Ergodic Ramsey theory — An update’, in M. Pollicott and K. Schmidt (eds.): Ergodic Theory of Z d-actions, Vol. 228 of Lecture Notes, London Math. Soc, 1996, pp. 1–61.Google Scholar
  2. [2]
    Bergelson, V., Blass, A., and Hindman, N.: ‘Partition theorems for spaces of variable words’, Proc. London Math. Soc. 68 (1994), 449–476.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Bergelson, V., and Leibman, A.: ‘Set-polynomials and polynomial extensions of the Hales-Jewett theorem’, Ann. of Math. (2) 150,no. 1 (1999), 33–75.Google Scholar
  4. [4]
    Bergelson, V., and Mccutcheon, R.: ‘Uniformity in polynomial Szemerédi theorem’, in M. Pollicott and K. Schmidt (eds.): Ergodic Theory of Z d-actions, Vol. 228 of Lecture Notes, London Math. Soc, 1996, pp. 273–296.Google Scholar
  5. [5]
    Bergelson, V., and Mccutcheon, R.: A polynomial IP Szemerédi theorem for finite families of commuting transformations, Memoirs. Amer. Math. Soc, to appear.Google Scholar
  6. [6]
    Carlson, T.: ‘Some unifying principles in Ramsey theory’, Discr. Math. 68 (1988), 117–169.CrossRefzbMATHGoogle Scholar
  7. [7]
    Carlson, T., and Simpson, S.: ‘A dual form of Ramsey’s theorem’, Adv. Math. 53 (1984), 265–290.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Furstenberg, H., and Katznelson, Y.: ‘Idempotents in compact semigroups and Ramsey theory’, Israel J. Math. 68 (1990), 257–270.MathSciNetGoogle Scholar
  9. [9]
    Furstenberg, H., and Katznelson, Y.: ‘A density version of the Hales-Jewett theorem’, J. d’Anal. Math. 57 (1991), 64–119.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Graham, R., Leeb, K., and Rothschild, B.: ‘Ramsey’s theorem for a class of categories’, Adv. Math. 8 (1972), 417–433.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Graham, R., Rothschild, B., and Spencer, J.: Ramsey theory, Wiley, 1980.Google Scholar
  12. [12]
    Hales, A.W., and Jewett, R.I.: ‘Regularity and positional games’, Trans. Amer. Math. Soc. 106 (1963), 222–229.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Leibman, A.: ‘Multiple recurrence theorem for measure preserving actions of a nilpotent group’, Geom. Fund. Anal. 8 (1998), 853–931.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Mccutcheon, R.: Elemental methods in ergodic Ramsey theory, Vol. 1722 of Lecture Notes in Mathematics, Springer, 1999.Google Scholar
  15. [15]
    Nilli, A.: ‘Shelah’s proof of the Hales-Jewett theorem’: Mathematics of Ramsey theory (Algorithms Combin.), Vol. 5, Springer, 1990, pp. 150–151.MathSciNetGoogle Scholar
  16. [16]
    Shelah, S.: ‘Primitive recursive bounds for van der Waerden numbers’, J. Amer. Math. Soc. 1,no. 3 (1988), 683–697.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Spencer, J.: ‘Ramsey’s theorem for spaces’, Trans. Amer. Math. Soc. 249 (1979), 363–371.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Walters, M.: ‘Combinatorial proofs of the polynomial van der Waerden theorem and the polynomial Hales-Jewett theorem’, J. London Math. Soc. (2) 61,no. 1 (2000), 1–12.zbMATHCrossRefMathSciNetGoogle Scholar

References

  1. [1]
    Baker, G.A., and Graves-Morris, P.R.: Fadé approximants, Addison-Wesley, 1981.Google Scholar
  2. [2]
    Barel, M. van, and Kravanja, P.: ‘A stabilized superfast solver for indefinite Hankel systems’, Linear Alg. & Its Appl. 284 (1998), 335–355.zbMATHCrossRefGoogle Scholar
  3. [3]
    Barnett, S.: Polynomials and linear control systems, M. Dekker, 1983.Google Scholar
  4. [4]
    Bini, D.A., and Gemignani, L.: ‘Fast fraction free triangularization of Bezoutians with applications to sub-resultant chain computation’, Linear Alg. & Its Appl. 284 (1998), 19–39.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Bini, D.A., and Pan, V.: Matrix and polynomial computations 1: Fundamental algorithms, Birkhäuser, 1994.Google Scholar
  6. [6]
    Brezinski, C: Padé-type approximation and general orthogonal polynomials, Birkhäuser, 1980.Google Scholar
  7. [7]
    Bultheel, A., and Barel, M. van: Linear algebra: Rational approximation and orthogonal polynomials, Studies in Computational Math. North-Holland, 1997.zbMATHGoogle Scholar
  8. [8]
    Cabay, S., and Meleshko, R.: ‘A weakly stable algorithm for Padé approximation and the inversion of Hankel matrices’, SIAM J. Matrix Anal. Appl. 14 (1993), 735–765.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Collins, G.E.: ‘Sub-resultants and reduced polynomial remainder sequences’, J. Assoc. Comput. Mach. 14 (1967), 128–142.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Datta, B.N., Johnson, C.R., Kaashoek, M.A., Plemmons, R., and Sontag, E.D. (eds.): Linear algebra in signals, systems and control, SIAM, 1988.Google Scholar
  11. [11]
    Draux, A.: Polynômes orthogonaux: Formels-applications, Vol. 974 of Lecture Notes in Mathematics, Springer, 1983.Google Scholar
  12. [12]
    Fuhrmann, P.A.: A polynomial approach to linear algebra, Springer, 1996.Google Scholar
  13. [13]
    Gragg., W.B.: ‘The Pade table and its relation to certain algorithms of numerical analysis’, SIAM Review 14 (1972), 1–61.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Gragg, W.B., and Lindquist, A.: ‘On the partial realization problem.’, Linear Alg. & Its Appl. 50 (1983), 277–319.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Gutknecht, M.H.: ‘A completed theory of unsymmetric Lanczos process and related algorithms’, SIAM J. Matrix Anal. Appl. 13 (1992), 594–639.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Heinig, G., and Rost, K.: Algebraic methods for Toeplitz-like matrices and operators, Akad. Berlin & Birkhäuser, 1984.Google Scholar
  17. [17]
    Householder, A.S.: The numerical treatment of a single nonlinear equation, McGraw-Hill, 1970.Google Scholar
  18. [18]
    Iohvidov., I.S.: Hankel and Toeplitz matrices and forms, Birkhäuser, 1982.Google Scholar
  19. [19]
    Kailath, T.: Linear systems, Prentice-Hall, 1980.Google Scholar
  20. [20]
    Kailath, T., Kung, S.Y., and Morp, M.: ‘Displacement ranks of matrices and linear equations’, J. Math. Anal. Appl. 68 (1979), 395–407.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Kailath, T., and Sayed, A.H. (eds.): Fast reliable algorithms for matrices with structure, SIAM, 1999.Google Scholar
  22. [22]
    Labahn, G., Choi, D.K., and Cabay, S.: ‘The inverses of block Hankel and block Toeplitz matrices’, SIAM J. Comput. 19 (1990), 98–123.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Lickteig, T., and Royal, M.F.: ‘Cauchy index computation’, Calcolo 33 (1996), 337–352.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Naimark, M.A., and Krein., M.G.: ‘The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations’, Linear and Multilinear Algebra 10 (1981), 265–308.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Power, S.C.: Hankel operators in Hilbert spaces, Research Notes in Math. Pitman, 1982.Google Scholar
  26. [26]
    Widom, H.: ‘Hankel matrices’, Trans. Amer. Math. Soc. 127 (1966), 179–203.MathSciNetGoogle Scholar

References

  1. [l]
    Hardy, G.H.: ‘Mendelian proportions in a mixed population’, Sci. 28 (1908), 49–50.CrossRefGoogle Scholar
  2. [2]
    Stren, C: ‘The Hardy-Weinberg law’, Sci. 97 (1943), 137–138.CrossRefGoogle Scholar
  3. [3]
    Weinberg, W.: ‘On the demonstration of heredity in man’: Papers on Human Genetics, Prentice-Hall, 1963, Original: 1980; Translation by S.H. Boyer.Google Scholar

References

  1. [1]
    Ablowitz, M.J., and Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering, Vol. 149 of London Math. Soc. Lecture Notes, Cambridge Univ. Press, 1991.Google Scholar
  2. [2]
    Calogero, F., and Degasperis, A.: Spectral transform and solitons 1, Vol. 13 of Studies Math. Appl., North-Holland, 1982.Google Scholar
  3. [3]
    Dmitrieva, L.A.: ‘Finite-gap solutions of the Harry Dym equation’, Phys. Lett. A 182,no. 1 (1993), 65–70.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., and Morris, H.C.: Solitons and nonlinear waves, Acad. Press, 1982.Google Scholar
  5. [5]
    Fuchssteiner, B., Schulze, T., and Carillo, S.: ‘Explicit solutions for the Harry Dym equation’, J. Phys. A 25,no. 1 (1992), 223–230.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Gardner, C.S., Greene, J.M., Kruskal, M.D., and Miura, R.M.: ‘Method for solving the Korteweg-de Vries equation’, Phys. Rev. Lett. 19 (1967), 1095–1097.zbMATHCrossRefGoogle Scholar
  7. [7]
    Gel’fand, I.M., and Levitan, B.M.: ‘On the determination of a differential equation from its spectral function’, Izv. Akad. Nauk. SSSR Ser. Mat. 15 (1951), 309–366.MathSciNetGoogle Scholar
  8. [8]
    Hereman, W., Banerjee, P.P., and Chaterjee, M.R.: ‘Derivation and implicit solution of the Harry Dym equation and its connections with the Korteweg-de Vries equation’, J. Phys. A 22,no. 3 (1989), 241–255.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Kadanoff, L.P.: ‘Exact solutions for the Saffman-Taylor problem with surface tension’, Phys. Rev. Lett. 65,no. 24 (1990), 2986–2988.CrossRefGoogle Scholar
  10. [10]
    Kay, I., and Moses, H.E.: ‘The determination of the scattering potential from the spectral measure function, III. Calculation of the scattering potential from the scattering operator for the one-dimensional Schrödinger equation’, Nuovo Cimento 3,no. 10 (1956), 276–304.MathSciNetGoogle Scholar
  11. [11]
    Konopelchenko, B.G., and Dubrovsky, V.G.: ‘Some integrable nonlinear evolution equations in 2 + 1 dimensions’, Phys. Lett. A 102 (1984), 15–17.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Korteweg, D.J., and Vries, G. DE: ‘On the change in form of long waves advancing in a rectangular canal and on a new type of long stationary waves’, Philos. Mag. 39,no. 5 (1895), 422–443.Google Scholar
  13. [13]
    Kruskal, M.D.: ‘Nonlinear wave equations’, in J. MOSER (ed.): Dynamical Systems, Theory and Applications, Vol. 38 of Lecture Notes in Physics, Springer, 1975.Google Scholar
  14. [14]
    Leo, M., Leo, R.A., Soliani, G., Solombrino, L., and Martina, L.: ‘Lie-Bäcklund symmetries for the Harry Dym equation’, Phys. Rev. D 27,no. 6 (1983), 1406–1408.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Marchenko, V.A.: ‘On the reconstruction of the potential energy from phases of the scattered waves’, Dokl. Akad. Nauk SSSR 104 (1955), 695–698.zbMATHMathSciNetGoogle Scholar
  16. [16]
    Newell, A.C.: Solitons in mathematics and physics, Vol. 48 of CBMS-NSF, SIAM, 1985.Google Scholar
  17. [17]
    Oevel, W., and Rogers, C: ‘Gauge transformations and reciprocal links in 2 + 1 dimensions’, Rev. Math. Phys. 5 (1993), 299–330.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Palais, R.S.: ‘Symmetries of solitons’, Bull. Amer. Math. Soc. 34,no. 4 (1997), 339–403.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Rogers, C: ‘The Harry Dym equation in 2 + 1 dimensions: a reciprocal link with the Kadomtsev-Petviashvili equation’, Phys. Lett. A 120 (1987), 15–15.CrossRefMathSciNetGoogle Scholar
  20. [20]
    Rogers, C, and Nucci, M.C.: ‘On reciprocal Backlund transformations and the Korteweg-de Vries hierarchy’, Physica Scripta 33 (1988), 289–292.CrossRefMathSciNetGoogle Scholar
  21. [21]
    Rogers, C, and Shadwick, W.F.: Bäcklund transformations and their applications, Vol. 161 of Math. Sci. and Engin., Acad. Press, 1982.Google Scholar
  22. [22]
    Rogers, C, and Wong, P.: ‘On reciprocal transformations of inverse schemes’, Physica Scripta 30 (1984), 10–14.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Sabatier, P.C.: ‘On some spectral problems and isospectral evolutions connected with the classical string problem. I: Constants of the motion; II: Evolution equations’, Lett. Nuovo Cimento 26 (1979), 477–482; 483–486.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Schief, W.K., and Rogers, C: ‘Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces’, Proc. Royal Soc. London 455 (1999), 3163–3188.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Weiss, J.: ‘The Painlevé property for partial differential equations II: Bäcklund transformations, Lax pairs, and the Schwarzian derivative’, J. Math. Phys. 24,no. 6 (1983), 1405–1413.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Weiss, J.: ‘Modified equations, rational solutions and the Painleve property for the Kadomtsev-Petviashvili and Hirota-Satsuma equations’, J. Math. Phys. 26,no. 9 (1985), 2174–2180.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Weiss, J.: ‘Bäcklund transformation and the Painlevé property’, J. Math. Phys. 27,no. 5 (1986), 1293–1305.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Yi-Shen, Li: ‘Evolution equations associated with the eigenvalue problem based on the equation φ xx = [u(x)-k 2 ρ(x)]φ’, Nuovo Cimento 70B,no. N1 (1982), 1–12.Google Scholar

References

  1. [1]
    Apostol, T.M.: Modular functions and Dirichlet series in number theory, Springer, 1976, p. 120ff.Google Scholar
  2. [2]
    Bump, D.: Automorphic forms and representations, Cambridge Univ. Press, 1997.Google Scholar
  3. [3]
    Hurt, N.E.: ‘Exponential sums and coding theory. A review’, Ada Applic. Math. 46 (1997), 49–91.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Hurt, N.: Quantum chaos and mesoscopic systems, Kluwer Acad. Publ., 1997, p. 101; 163ff.Google Scholar
  5. [5]
    Knopp, M.I.: Modular functions in analytic number theory, Markham Publ., 1970.Google Scholar
  6. [6]
    Ogg, A.: Modular forms and Dirichlet series, Benjamin, 1969, p. Chap. II.Google Scholar
  7. [7]
    Rankin, R.A.: Modular forms and functions, Cambridge Univ. Press, 1977, p. Chap. 9.Google Scholar
  8. [8]
    Shimura, G.: Euler products and Eisenstein series, Amer. Math. Soc, 1997, p. Sect. 11.Google Scholar
  9. [9]
    Venkov, A.B.: Spectral theory of automorphic functions, Kluwer Acad. Publ., 1990, p. 34; 59.Google Scholar

References

  1. [1]
    Fröhlich, A., and Sheperdson, J.C.: ‘Effective procedures in field theory’, Philos. Trans. Royal Soc. A 248 (1956), 407–432.CrossRefzbMATHGoogle Scholar
  2. [2]
    Henzelt, K.: ‘Zur Theorie der Polynomideale und Resultanten, bearbeitet von Emmy Noether’, Math. Ann. 88 (1923), 53–79.CrossRefGoogle Scholar
  3. [3]
    Hermann, G.: ‘Die Frage der endlich vielen Schritte in der Theorie der Polynomideale’, Math. Ann. 95 (1926), 736–788.CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    Krull, W.: ‘Parameterspezialisierung in Polynomringen’, Archiv Math. 1 (1948/49), 57–60.MathSciNetGoogle Scholar
  5. [5]
    Lazard, D.: ‘Algèbre linéaire sur K[X 1,…,X n et elimination’, Bull. Soc. Math. France 105 (1977), 165–190.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Mayr, E.W., and Meyer, A.R.: ‘Complexity of the word problems for commutative semigroups and polynomial ideals’, Adv. Math. 46 (1982), 305–329.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Renschuch, B.: ‘Beiträge zur konstruktiven Theorie der Polynomideale XVII/1: Zur Henzelt/Noether/Hermannschen Theorie der endlich vielen Schritte’, Wiss. Z. Pädagog. Hochsch. Karl Liebknecht, Potsdam 24 (1980), 87–99.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Renschuch, B.: ‘Beiträge zür konstruktiven Theorie der Polynomideale XVII/2: Zur Henzelt/Noether/Hermannschen Theorie der endlich vielen Schritte’, Wiss. Z. Pädagog. Hochsch. Karl Liebknecht, Potsdam 25 (1981), 125–136.zbMATHMathSciNetGoogle Scholar
  9. [9]
    Reufel, M.: ‘Konstruktionsverfahren bei Moduln über Polynomringen’, Math. Z. 90 (1965), 231–250.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Seidenberg, A.: ‘Constructions in algebra’, Trans. Amer. Math. Soc. 197 (1974), 273–313.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Waerden, B.L. van der: ‘Erne Bemerkung über die Unzerlegbarkeit von Polynomen’, Math. Ann. 102 (1930), 738–739.CrossRefMathSciNetzbMATHGoogle Scholar

References

  1. [1]
    Erickson, G.W., and Fossa, J.A.: Dictionary of paradox, Univ. Press Amer., 1998, p. 84.Google Scholar
  2. [2]
    Hermes, H., and Markwald, W.: ‘Foundations of mathematics’, in H. Behnke et al. (eds.): Fundamentals of Mathematics, Vol. 1, MIT, 1986, pp. 3–88.Google Scholar
  3. [3]
    Radhakrishna, L.: ‘History, culture, excitement, and relevance of mathematics’, Rept. Dept. Math. Shivaji Univ. (1982).Google Scholar

References

  1. [1]
    Britton, J.L.: ‘The word problem’, Ann. of Math. 77(1963), 16–32.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Chandler, B., and Magnus, W.: The history of combinatorial group theory: A case study in the history of ideas, Vol. 9 of Studies History Math, and Phys. Sci., Springer, 1982.Google Scholar
  3. [3]
    Dunwoody, M.J.: ‘The accessibility of finitely presented groups’, Invent. Math. 81 (1985), 449–457.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Higman, G., Neumann, B.H., and Neumann, H.: ‘Embedding theorems for groups’, J. London Math. Soc. 24 (1949), 247–254; II.4, 13.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Kampen, E.R. van: ‘On some lemmas in the theory of groups’, Amer. J. Math. 55 (1933), 268–273.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Kampen, E.R. van: ‘On the connection between the fundamental groups of some related spaces’, Amer. J. Math. 55 (1933), 261–267.zbMATHGoogle Scholar
  7. [7]
    Lyndon, R., and Schupp, P.: Combinatorial group theory, Springer, 1977.Google Scholar
  8. [8]
    Rips, E., and Sela, Z.: ‘Cyclic splittings of finitely presented groups and the canonical JSJ decomposition’, Ann. of Math. (2) 146,no. 1 (1997), 53–109.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Serre, J.P.: ‘Arbres, amalgams, SL 2Astérisque 46 (1977).Google Scholar

References

  1. [1]
    Przytycki, J.H.: ‘Homotopy and q-homotopy skein modules of 3-manifolds: An example in Algebra Situs’: Proc. Conf. in Low-Dimensional Topology in Honor of Joan Birman’s 70th Birthday (Columbia Univ./Barnard College, March, 14–15, 1998), Internat. Press, 2000.Google Scholar

References

  1. [1]
    Baker, J.: ‘The stability of the cosine equation’, Proc. Amer. Math. Soc. 80 (1980), 411–416.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Baker, J., Lawrence, J., and Zorzitto, F.: ‘The stability of the equation f(x+y)= f(x)f(y)’, Proc. Amer. Math. Soc. 74 (1979), 242–246.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Borelli, C, and Forti, G.L.: ‘On a general Hyers-Ulam stability result’, Internat. J. Math. Math. Sci. 18 (1995), 229–236.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Czerwik, S.: ‘On the stability of the quadratic mapping in normed spaces’, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Forti, G.L.: ‘The stability of homomorphisms and amenability with applications to functional equations’, Abh. Math. Sem. Univ. Hamburg 57 (1987), 215–226.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Forti, G.L.: ‘Hyers-Ulam stability of functional equations in several variables’, Aequat. Math. 50 (1995), 143–190.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Gajda, Z.: ‘On stability of additive mappings’, Internat. J. Math. Math. Sci. 14 (1991), 431–434.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Ger, R.: ‘Superstability is not natural’, Rocznik Naukowo-Dydaktyczny WSP w Krakowie, Prace Mat. 159 (1993), 109–123.MathSciNetGoogle Scholar
  9. [9]
    Ger, R., and Šemrl, P.: ‘The stability of the exponential equation’, Proc. Amer. Math. Soc. 124 (1996), 779–787.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Găvruta, P.: ‘A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings’, J. Math. Anal. Appl. 184 (1994), 431–436.CrossRefMathSciNetzbMATHGoogle Scholar
  11. [11]
    Hyers, D.H.: ‘On the stability of the linear functional equation’, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Hyers, D.H., Isac, G., and Rassias, Th.M.: Stability of functional equations in several variables, Birkhäuser, 1998.Google Scholar
  13. [13]
    Hyers, D.H., and Rassias, Th.M.: ‘Approximate homomorphisms’, Aequat. Math. 44 (1992), 125–153.CrossRefMathSciNetzbMATHGoogle Scholar
  14. [14]
    Isac, G., and Rassias, Th.M.: ‘On the Hyers-Ulam stability of ψ-additive mappings’, J. Approx. Th. 72 (1993), 131–137.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Jarosz, K.: Perturbations of Banach algebras, Springer, 1985.Google Scholar
  16. [16]
    Jung, S.-M.: ‘On the Hyers-Ulam-Rassias stability of approximately additive mappings’, J. Math. Anal. Appl. 204 (1996), 221–226.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Jung, S.-M.: ‘Hyers-Ulam-Rassias stability of functional equations’, Dynamic Syst. Appl. 6 (1997), 541–566.zbMATHGoogle Scholar
  18. [18]
    Jung, S.-M.: ‘Hyers-Ulam-Rassias stability of Jensen’s equation and its application’, Proc. Amer. Math. Soc. 126 (1998), 3137–3143.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Jung, S.-M.: ‘On the Hyers-Ulam stability of the functional equations that have the quadratic property’, J. Math. Anal. Appl. 222 (1998), 126–137.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Jung, S.-M.: Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, 2001.Google Scholar
  21. [21]
    Kominek, Z.: ‘On a local stability of the Jensen functional equation’, Demonstrate Math. 22 (1989), 499–507.zbMATHMathSciNetGoogle Scholar
  22. [22]
    Rassias, Th.M.: ‘On the stability of the linear mapping in Banach spaces’, Proc. Amer. Math. Soc. 72 (1978), 297–300.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Rassias, Th.M.: ‘On a modified Hyers-Ulam sequence’, J. Math. Anal. Appl. 158 (1991), 106–113.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Rassias, Th.M.: ‘On the stability of functional equations and a problem of Ulam’, Ada Applic. Math. 62 (2000), 23–130.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Rassias, Th.M.: ‘On the stability of functional equations originated by a problem of Ulam’, Studio, Univ. Babes-Bolyai (to appear).Google Scholar
  26. [26]
    Rassias, Th.M.: ‘On the stability of the quadratic functional equation’, Mathematica (to appear).Google Scholar
  27. [27]
    Rassias, Th.M., and Šemrl, P.: ‘On the Hyers-Ulam stability of linear mappings’, J. Math. Anal. Appl. 173 (1993), 325–338.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Rassias, Th.M., and Tabor, J.: ‘What is left of Hyers-Ulam stability?’, J. Natural Geometry 1 (1992), 65–69.zbMATHMathSciNetGoogle Scholar
  29. [29]
    Skof, F.: ‘Sull’approssimazione delle applicazioni localmente δ-additive’, Atti Accad. Sci. Torino 117 (1983), 377–389.zbMATHMathSciNetGoogle Scholar
  30. [30]
    Székelyhidi, L.: ‘On a theorem of Baker, Lawrence and Zorzitto’, Proc. Amer. Math. Soc. 84 (1982), 95–96.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Ulam, S.M.: A collection of mathematical problems, Interscience, 1960.Google Scholar

References

  1. [1]
    Babenko, K.: ‘Approximation of periodic functions of many variables by trigonometric polynomials’, Soviet Math. 1 (1960), 513–516. (Dokl. Akad. Nauk. SSSR 132 (1960), 247–250.)zbMATHMathSciNetGoogle Scholar
  2. [2]
    Temlyakov, V.: Approximation of periodic functions, Nova Sci., 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Personalised recommendations