Advertisement

Keywords

Periodic Orbit Prime Ideal Belief Function Daubechies Wavelet Spectral Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Čadek, M., and Šimša, J.: ‘Decomposable functions of several variables’, Aequat. Math. 40 (1990), 8–25.CrossRefMATHGoogle Scholar
  2. [2]
    Gauchman, H., and Rubel, L.A.: ‘Sums of products of functions of x times functions of y’, Linear Alg. & Its Appl. 125 (1989), 19–63.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Neuman, F.: ‘Functions of two variables and matrices involving factorizations’, C.R. Math. Rept. Acad. Sci. Canada 3 (1981), 7–11.MATHMathSciNetGoogle Scholar
  4. [4]
    Neuman, F.: ‘Factorizations of matrices and functions of two variables’, Czech. Math. J. 32,no. 107 (1982), 582–588.MathSciNetGoogle Scholar
  5. [5]
    Neuman, F., and Rassias, Th.: ‘Functions decomposable into finite sums of products’: Constantin Catathéodory-An Internal. Tribute, Vol. II, World Sci., 1991, pp. 956–963.MathSciNetGoogle Scholar
  6. [6]
    RASSIAS, TH.M., and ŠIMŠA, J.: Finite sum decompositions in mathematical analysis, Wiley, 1995.Google Scholar
  7. [7]
    Rassias, Th.M., and Šimša, J.: ‘19 Remark’, Aequat. Math. 56 (1998), 310.Google Scholar
  8. [8]
    Stéphanos, C.M.: ‘Sur une categorie d’quations fonction-alles’: Math. Kongr. Heidelberg, Vol. 1905, 1904, pp. 200–201.Google Scholar
  9. [9]
    Stéphanos, C.M.: ‘Sur une categorie d’quations fonction-alles’, Rend. Circ. Mat. Palermo 18 (1904), 360–362.MATHGoogle Scholar

References

  1. [1]
    Balachandran, K., and Dauer, J.P.: ‘Controllability of nonlinear systems via fixed point theorems’, J. Optim. Th. Appl. 53 (1987), 345–352.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Banas, J., and Goebel, K.: Measure of noncompactness in Banach spaces, M. Dekker, 1980.Google Scholar
  3. [3]
    Darbo, G.: ‘Punti uniti in transformazioni a condominio non compacto’, Rend. Sera. Mat. Univ. Padova 24 (1955), 84–92.MathSciNetMATHGoogle Scholar
  4. [4]
    Kuratowski, C.: ‘Sur les espaces complets’, Fundam. Math. 15 (1930), 301–309.MATHGoogle Scholar

References

  1. [1]
    Daubechies, I.: ‘Orthonormal bases of compactly supported wavelets’, Commun. Pure Appl. Math. 41 (1988), 909–996.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Daubechies, I.: Ten lectures on wavelets, SIAM, 1992.Google Scholar
  3. [3]
    Haar, A.: ‘Zur theorie der orthogonalen Funktionensysteme’, Math. Ann. 69 (1910), 331–371.MathSciNetCrossRefMATHGoogle Scholar

References

  1. [1]
    Calderbank, A.R., and Mcguire, G.: ‘Z4-linear codes obtained as projections of Kerdock and Delsarte-Goethals codes’, Linear Alg. & Its Appl. 226–228 (1995), 647–665.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Delsarte, P., and Goethals, J.M.: ‘Alternating bilinear forms over GF(q)’, J. Combin. Th. A 19 (1975), 26–50.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., and Sole, P.: ‘The Z4-linearity of Kerdock, Preparata, Goethals, and related codes’, IEEE Trans. Inform. Th. 40 (1994), 301–319.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Hergert, F.B.: ‘On the Delsarte-Goethals codes and their formal duals’, Discr. Math. 83 (1990), 249–263.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Macwilliams, F.J., and Sloane, N.J.A.: The theory of error-correcting codes, North-Holland, 1977.Google Scholar

References

  1. [1]
    Cano, J., Delgado, M., and Moral, S.: ‘An axiomatic framework for propagating uncertainty in directed acyclic networks’, Internat. J. Approximate Reasoning 8 (1993), 253–280.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Dempster, A.P.: ‘Upper and lower probabilities induced by a multi-valued mapping’, Ann. Math. Stat. 38 (1967), 325–339.MathSciNetMATHGoogle Scholar
  3. [3]
    Klopotek, M.A.: ‘On (anti)conditional independence in Dempster-Shafer theory’, J. Mathware and Softcomputing 5,no. 1 (1998), 69–89.MATHMathSciNetGoogle Scholar
  4. [4]
    Klopotek, M.A., and Wierzchoń, S.T.: ‘On marginally correct approximations of Dempster-Shafer belief functions from data’: Proc. IPMU’96 (Information Processing and Management of Uncertainty), Grenada (Spain), 1–5 July, Vol. II, Univ. Granada, 1996, pp. 769–774.Google Scholar
  5. [5]
    Kłopotek, M.A., and WIERZCHOŃ, S.T.: ‘Qualitative versus quantitative interpretation of the mathematical theory of evidence’, in Z.W. Raś AND A. Skowron (eds.): Foundations of Intelligent Systems 7. Proc. ISMIS’97 (Charlotte NC, 15–17 Oct., 1997), Vol. 1325 of Lecture Notes in Artificial Intelligence, Springer, 1997, pp. 391–400.Google Scholar
  6. [6]
    Shafer, G.: A mathematical theory of evidence, Princeton Univ. Press, 1976.Google Scholar
  7. [7]
    Shenoy, P.P.: ‘Conditional independence in valuation based systems’, Internat. J. Approximate Reasoning 109 (1994).Google Scholar
  8. [8]
    Shenoy, P., and Shafer, G.: ‘Axioms for probability and belief-function propagation’, in R.D. Shachter, T.S. Levitt, L.N. Kanal, and J.F. Lemmer (eds.): Uncertainty in Artificial Intelligence, Vol. 4, Elsevier, 1990.Google Scholar
  9. [9]
    Skowron, A., and Grzymala-Busse, J.W.: ‘From rough set theory to evidence theory’, in R.R. Yager, J. Kasprzyk, and M. Fedrizzi (eds.): Advances in the Dempster-Shafer Theory of Evidence, Wiley, 1994, pp. 193–236.Google Scholar
  10. [10]
    Smets, Ph.: ‘Numerical representation of uncertainty’, in D.M. Abbay and Ph. Smets (eds.): Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 3, Kluwer Acad. Publ., 1998, pp. 265–309.Google Scholar
  11. [11]
    Wierzchoń, S.T., and Klopotek, M.A.: ‘Modified component valuations in valuation based systems as a way to optimize query processing’, J. Intelligent Information Syst. 9 (1997), 157–180.CrossRefGoogle Scholar

References

  1. [1]
    Abate, M.: ‘Converging semigroups of holomorphic maps’, Atti Accad. Naz. Lincei 82 (1988), 223–227.MATHMathSciNetGoogle Scholar
  2. [2]
    Abate, M.: ‘Horospheres and iterates of holomorphic maps’, Math. Z. 198 (1988), 225–238.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Abate, M.: ‘The infinitesimal generators of semigroups of holomorphic maps’, Ann. Mat. Pura Appl. 161 (1992), 167–180.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Berkson, E., and Porta, H.: ‘Semigroups of analytic functions and composition operators’, Michigan Math. J. 25 (1978), 101–115.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Burckel, R.B.: ‘Iterating analytic self-maps of discs’, Amer. Math. Monthly 88 (1981), 396–407.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Chen, G.N.: ‘Iteration for holomorphic maps of the open unit ball and the generalized upper half-plane of Cn’, J. Math. Anal. Appl. 98 (1984), 305–313.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Chu, C.-H., and Mellon, P.: ‘Iteration of compact holomorphic maps on a Hilbert ball’, Proc. Amer. Math. Soc. 125 (1997), 1771–1777.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Cowen, C.C., and Maccluer, B.D.: Composition operators on spaces of analytic functions, CRC, 1995.Google Scholar
  9. [9]
    Denjoy, A.: ‘Sur l’itération des fonctions analytiques’, C.R. Acad. Sci. Paris 182 (1926), 255–257.MATHGoogle Scholar
  10. [10]
    Fan, K.: ‘Iteration of analytic functions of operators I’, Math. Z. 179 (1982), 293–298.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Fan, K.: ‘Iteration of analytic functions of operators II’, Linear and Multilinear Algebra 12 (1983), 295–304.MATHCrossRefGoogle Scholar
  12. [12]
    Goebel, K.: ‘Fixed points and invariant domains of holomorphic mappings of the Hilbert ball’, Nonlin. Anal. 6 (1982), 1327–1334.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Goebel, K., and Reich, S.: Uniform convexity, hyperbolic geometry and nonexpansive mappings, M. Dekker, 1984.Google Scholar
  14. [14]
    Heins, M.H.: ‘On the iteration of functions which are analytic and single-valued in a given multiply-connected region’, Amer. J. Math. 63 (1941), 461–480.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Hervé, M.: ‘Quelques proprietes des applications analytiques d’une boule à m dimensions dans elle-même’, J. Math. Pures Appl. 42 (1963), 117–147.MATHMathSciNetGoogle Scholar
  16. [16]
    Kapeluszny, J., Kuczumow, T., and Reich, S.: ‘The Denjoy-Wolff theorem for condensing holomorphic mappings’, J. Fund. Anal. 167 (1999), 79–93.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Kapeluszny, J., Kuczumow, T., and Reich, S.: ‘The Denjoy-Wolff theorem in the open unit ball of a strictly convex Banach space’, Adv. Math. 143 (1999), 111–123.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Khatskevich, V., Reich, S., and Shoikhet, D.: ‘Asymptotic behavior of solutions of evolution equations and the construction of holomorphic retractions’, Math. Nachr. 189 (1998), 171–178.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Khatskevich, V., and Shoikhet, D.: Differentiate operators and nonlinear equations, Birkhäuser, 1994.Google Scholar
  20. [20]
    Kubota, Y.: ‘Iteration of holomorphic maps of the unit ball into itself≐, Proc. Amer. Math. Soc. 88 (1983), 476–480.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Kuczumow, T., Reich, S., and Shoikhet, D.: ‘The existence and non-existence of common fixed points for commuting families of holomorphic mappings’, Nonlin. Anal, (in press).Google Scholar
  22. [22]
    Kuczumow, T., and Stachura, A.: ‘Iterates of holomorphic and k D-nonexpansive mappings in convex domains in C n, Adv. Math. 81 (1990), 90–98.MATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Lyubich, Yu., and Zemanek, J.: ‘Precompactness in the uniform ergodic theory’, Studia Math. 112 (1994), 89–97.MATHMathSciNetGoogle Scholar
  24. [24]
    Maccluer, B.D.: ‘Iterates of holomorphic self-maps of the unit ball in Cn’, Michigan Math. J. 30 (1983), 97–106.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Mellon, P.: ‘Another look at results of Wolff and Julia type for J*-algebras’, J. Math. Anal. Appl. 198 (1996), 444–457.MATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    Reich, S.: ‘Averaged mappings in the Hilbert ball’, J. Math. Anal. Appl. 109 (1985), 199–206.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    Reich, S.: ‘The asymptotic behavior of a class of nonlinear semigroups in the Hilbert ball’, J. Math. Anal. Appl. 157 (1991), 237–242.MATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    Reich, S., and Shoikhet, D.: ‘The Denjoy-Wolff theorem’, Ann. Univ. Mariae Curie-Sklodowska 51 (1997), 219–240.MATHMathSciNetGoogle Scholar
  29. [29]
    Reich, S., and Shoikhet, D.: ‘Semigroups and generators on convex domains with the hyperbolic metric’, Atti Accad. Naz. Lincei 8 (1997), 231–250.MATHMathSciNetGoogle Scholar
  30. [30]
    Sine, R.: ‘Behavior of iterates in the Poincaré metric’, Houston J. Math. 15 (1989), 273–289.MATHMathSciNetGoogle Scholar
  31. [31]
    Stachura, A.: ‘Iterates of holomorphic self-maps of the unit ball in Hilbert space’, Proc. Amer. Math. Soc. 93 (1985), 88–90.MATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    Vesentini, E.: ‘SU un teorema di Wolff e Denjoy’, Rend. Sem. Mat. Fis. Milano 53 (1983), 17–26.MathSciNetMATHGoogle Scholar
  33. [33]
    Wlodarczyk, K.: ‘Julia’s lemma and Wolff’s theorem for J*-algebras’, Proc. Amer. Math. Soc. 99 (1987), 472–476.MATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    Wolff, J.: ‘Sur l’itération des fonctions bornées’, C.R. Acad. Sci. Paris 182 (1926), 200–201.MATHGoogle Scholar
  35. [35]
    Wolff, J.: ‘Sur l’itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette region’, C.R. Acad. Sci. Paris 182 (1926), 42–43.MATHGoogle Scholar
  36. [36]
    Wolff, J.: ‘Sur une généralisation d’un théorème de Schwarz’, C.R. Acad. Sci. Paris 182 (1926), 918–920.MATHGoogle Scholar
  37. [37]
    Wolff, J.: ‘Sur une généralisation d’un théorème de Schwarz’, C.R. Acad. Sci. Paris 183 (1926), 500–502.MATHGoogle Scholar
  38. [38]
    Yang, P.: ‘Holomorphic curves and boundary regularity of biholomorphic maps of pseudoconvex domains’, preprint (1978).Google Scholar

References

  1. [1]
    Bruijn, N.G. de: ‘On the number of uncancelled elements in the sieve of Eratosthenes’, Indag. Math. 12 (1950), 247–256. (Nederl. Akad. Wetensch. Proc. 53 (1950), 803–812.)Google Scholar
  2. [2]
    Bruijn, N.G. de: ‘On the number of positive integers ≤ x and free prime factors τ; y. II’, Indag. Math. 28 (1966), 239–247. (Nederl. Akad. Wetensch. Proc. Ser. A 69 (1966).)Google Scholar
  3. [3]
    Dickman, K.: ‘On the frequency of numbers containing prime factors of a certain relative magnitude’, Ark. Mat., Astron. och Fysik 22A,no. 10 (1930), 1–14.Google Scholar
  4. [4]
    Friedlander, J.: ‘On the number of ideals free from large prime divisors’, J. Reine Angew. Math. 255 (1972), 1–7.MATHMathSciNetGoogle Scholar
  5. [5]
    Friedlander, J., and Granville, A.: ‘Integers without large prime factors, in short intervals’, Philos. Trans. Royal Soc. 345 (1993), 339–348.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Granville, A.: ‘On integers, without large prime factors, in arithmetic progressions II’, Philos. Trans. Royal Soc. 345 (1993), 349–362.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Hildebrand, A.: ‘Integers free of large prime factors and the Riemann hypothesis’, Mathematika 31,no. 2 (1985), 258–271.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Hildebrand, A., and Tenenbaum, G.: ‘Integers without large prime factors’, J. Théor. Nombres Bordeaux 5,no. 2 (1993), 411–484.MATHMathSciNetGoogle Scholar
  9. [9]
    Hildebrand, A., and Tenenbaum, G.: ‘On a class of differential-difference equations arising in number theory’, J. Anal. Math. 61 (1993), 145–179.MATHMathSciNetGoogle Scholar
  10. [10]
    Hunter, S., and Sorenson, J.: ‘Approximating the number of integers free of large prime factors’, Math. Comput. 66,no. 220 (1997), 1729–1741.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Mitrinović, D.S., Sandor, J., and Crstici, B.: Handbook of number theory, Kluwer Acad. Publ., 1996, p. Sect. IV.21.Google Scholar
  12. [12]
    Moree, P.: ‘Psixyology and Diophantine equations’, Diss. Univ. Leiden (1993).Google Scholar
  13. [13]
    Saias, E.: ‘Sur le nombre des entiers sans grand facteur premier’, J. Number Theory 32,no. 1 (1989), 78–99.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Wheeler, F.S.: ‘Two differential-difference equations arising in number theory’, Trans. Araer. Math. Soc. 318,no. 2 (1990), 491–523.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Frank, A.: ‘Connectivity and network flows’, in R.L. Graham, M. Grötschel, and L. Lovász (eds.): Handbook of Combinatorics, Elsevier, 1995, pp. 111–178.Google Scholar
  2. [2]
    Gass, S.I., and Harris, C.M. (eds.): Encyclopedia of Operations Research and Management Science, Kluwer Acad. Publ., 1996, pp. 166–167.Google Scholar
  3. [3]
    Lovász, L., Shmoys, D.B., and Tardos, E.: ‘Combinatorics in computer science’, in R.L. Graham, M. Grötschel, and L. Lovász (eds.): Handbook of Combinatorics, Elsevier, 1995, pp. 2003–2038.Google Scholar

References

  1. [1]
    Cartan, E.: The theory of spinors, Dover, 1966.Google Scholar
  2. [2]
    Corson, E.M.: Introduction to tensors, spinors, and relativistic wave-equations, Chelsea, 1953.Google Scholar
  3. [3]
    Dirac, P.A.M.: ‘The quantum theory of the electron’, Proc. Royal Soc. London A117 (1928), 610–624.CrossRefGoogle Scholar
  4. [4]
    Salingaros, N.A., and Wene, G.P.: ‘The Clifford algebra of differential forms’, Ada Applic. Math. 4 (1985), 271–191.MATHMathSciNetGoogle Scholar

References

  1. [1]
    Dirac, P.A.M.: ‘Quantized singularities in the electromagnetic field’, Proc. Royal Soc. London A133 (1931), 60–72.CrossRefGoogle Scholar
  2. [2]
    Donaldson, S.K., and Kronheimer, P.B.: The geometry of four-manifolds, Clarendon Press/Oxford Univ. Press, 1990.Google Scholar
  3. [3]
    Eguchi, T., Gilkey, P.B., and Hanson, A.J.: ‘Gravitation, gauge theories and differential geometry’, Phys. Rept. 66,no. 6 (1980), 213–393.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Freund, P.G.O.: ‘Dirac monopoles and the Seiberg-Witten monopole equations’, J. Math. Phys. 36 (1995), 2673–2674.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Seiberg, N., and Witten, E.: ‘Electric-magnetic duality: monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory’, Nucl. Phys. B426 (1994), 19–52.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Seiberg, N., and Witten, E.: ‘Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD’, Nucl. Phys. B431 (1994), 484–550.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Trautman, A.: ‘Solutions of Maxwell and Yang-Mills equations associated with Hopf fiberings’, Internat. J. Theoret. Phys. 16 (1977), 561–565.CrossRefGoogle Scholar
  8. [8]
    Witten, E.: ‘Monopoles and four-manifolds’, Math. Res. Lett. 1 (1994), 769–796.MATHMathSciNetGoogle Scholar
  9. [9]
    Wu, T.T., and Yang, C.N.: ‘Concept of nonintegrable phase factors and global formulation of gauge fields’, Phys. Rev. D12 (1975), 3845–3857.MathSciNetGoogle Scholar

References

  1. [1]
    Atiyah, M.: The geometry and physics of knots, Cambridge Univ. Press, 1990.Google Scholar
  2. [2]
    Baez, J., Segal, I.E., and Zhou, Z.: Introduction to algebraic and constructive quantum field theory, Princeton Univ. Press, 1992.Google Scholar
  3. [3]
    Bayen, F., Flato, M., Fronsdal, C., and Lichnerowicz, A.: ‘Quantum mechanics as a deformation of classical mechanics’, Lett. Math. Phys. 1 (1975/77), 521–570.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D.: ‘Deformation theory and quantization I–II’, Ann. Phys. 111 (1978), 61–110.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Connes, A.: Noncommutative geometry, Acad. Press, 1994.Google Scholar
  6. [6]
    Dimock, J.: ‘Algebras of local observables on manifold’, Comm. Math. Phys. 77 (1980), 219–228.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Dirac, P.M.A.: The principles of quantum mechanics, Oxford Univ. Press, 1958.Google Scholar
  8. [8]
    Doplicher, S., Haag, R., and Roberts, J.E.: ‘Fields, observables and gauge transformations I’, Comm. Math. Phys. 13 (1969), 1.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Doplicher, S., Haag, R., and Roberts, J.E.: ‘Fields, observables and gauge transformations, II’, Comm. Math. Phys. 15 (1969), 173.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Doplicher, S., Haag, R., and Roberts, J.E.: ‘Local observables and particle statistics, I’, Comm. Math. Phys. 23 (1971), 199.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Doplicher, S., Haag, R., and Roberts, J.E.: ‘Local observables and particle statistics, II’, Comm. Math. Phys. 35 (1974), 49.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Flato, M., and Sternheimer, D.: ‘Quantum groups, star products and cyclic cohomology’, in H. Araki, K.R. Ito, A. Kishimoto, and I. Ojima (eds.): Quantum and Non-Commutative Analysis, Math. Phys. Stud., Kluwer Acad. Publ., 1993, pp. 239–251.Google Scholar
  13. [13]
    Fukaya, K.: ‘Geometry of gauge field’, in T. Kotake, S. Nishikawa, and R. Schoen (eds.): Geometry and Global Analysis (Kept. First MSJ Internat. Res. Inst. (July 12–23, 1993), Tohoku Univ., Sendai, 1993.Google Scholar
  14. [14]
    Glimm, J., and Jaffe, A.: Quantum physics. A functional integral point of view, Springer, 1981.Google Scholar
  15. [15]
    Haag, R.: Local quantum physics, fields, particles, algebras, Springer, 1992.Google Scholar
  16. [16]
    Horzhy, S.S.: Introduction to algebraic quantum field theory, Kluwer Acad. Publ., 1990.Google Scholar
  17. [17]
    Karasev, M.V., and Maslov, V.P.: ‘Asymptotic and geometric quantization’, Russian Math. Surveys 39,no. 6 (1984), 133–205.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Kostant, B.: Graded manifolds, graded Lie theory and prequantization, Vol. 570 of Lecture Notes in Mathematics, Springer, 1991, pp. 229–232.Google Scholar
  19. [19]
    Lichnerowicz, A.: ‘Champs spinoriels et propagateurs on en relativité générale’, Bull. Soc. Math. France 92 (1964), 11–100.MATHMathSciNetGoogle Scholar
  20. [20]
    Lychagin, V.: ‘Calculus and quantizations over Hopf algebras’, Ada Applic. Math. 51 (1998), 303–352.MATHMathSciNetGoogle Scholar
  21. [21]
    Manin, Yu.I.: ‘Quantum groups and non-commutative geometry’, Montreal Univ. Preprint CRM-1561 (1988).Google Scholar
  22. [22]
    Peierls, R.: ‘The commutation laws of relativistic field theory’, Proc. Royal Soc. London A214 (1952), 143–157.MathSciNetGoogle Scholar
  23. [23]
    Pontrjagin, L.S.: ‘Smooth manifolds and their applications in homotopy theory’, Amer. Math. Soc. Transl. 11 (1959), 1–114.MathSciNetGoogle Scholar
  24. [24]
    Prástaro, A.: ‘Quantum geometry of PDE’s’, Rept. Math. Phys. 30,no. 3 (1991), 273.MATHCrossRefGoogle Scholar
  25. [25]
    Prástaro, A.: ‘Geometry of quantized super PDE’s’, Amer. Math. Soc. Transl. 167 (1995), 165.Google Scholar
  26. [26]
    Prástaro, A.: ‘(Co)bordisms in PDEs and quantum PDEs’, Rept. Math. Phys. 38,no. 3 (1996), 443–455.MATHCrossRefGoogle Scholar
  27. [27]
    Prástaro, A.: Geometry of PDEs and mechanics, World Sci., 1996.Google Scholar
  28. [28]
    Prástaro, A.: ‘Quantum geometry of super PDEs’, Rept. Math. Phys. 37,no. 1 (1996), 23–140.MATHCrossRefGoogle Scholar
  29. [29]
    Prástaro, A.: ‘Quantum and integral (co)bordisms in partial differential equations’, Ada Applic. Math. 51 (1998), 243–302.MATHCrossRefGoogle Scholar
  30. [30]
    Prástaro, A.: ‘(Co)bordism groups in PDEs’, Acta Applic. Math. 59,no. 2 (1999), 111–201.MATHCrossRefGoogle Scholar
  31. [31]
    Prástaro, A.: ‘Quantum and integral bordism groups in the Navier-Stokes equation’, in J. Szenthe (ed.): New Developments in Differential Geometry (Budapest, 1996), Kluwer Acad. Publ., 1999, pp. 344–360.Google Scholar
  32. [32]
    Prástaro, A.: ‘(Co)bordism groups in quantum PDEs’, Ada Applic. Math. 64 (2000), 111–127.MATHGoogle Scholar
  33. [33]
    Prástaro, A.: ‘Quantum manifolds and integral (co)bordism groups in quantum partial differential equations’, Nonlin. Anal, to appear (2001).Google Scholar
  34. [34]
    Souriau, J.M.: Structure des systemes dynamiques, Dunod, 1970.Google Scholar
  35. [35]
    Thom, R.: ‘Quelques propriétés globales des variétés différentiables’, Comment. Math. Helv. 28 (1954), 17–86.MATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    Thom, R.: ‘Remarques sur les problèmes comportant des inéqualities différentielles globales’, Bull. Soc. Math. France 87 (1959), 455–461.MathSciNetMATHGoogle Scholar
  37. [37]
    Vilenkin, N.JA., and Klimyk, A.V.: Representations of Lie groups and special functions, Vol. I–III, Kluwer Acad. Publ., 1991/93.Google Scholar
  38. [38]
    Woodhouse, M.: Geometric quantization, Oford Univ. Press, 1980.Google Scholar

References

  1. [1]
    Apostol, T.M.: Introduction to analytic number theory, Springer, 1976.Google Scholar
  2. [2]
    Bell, E.T.: ‘An arithmetical theory of certain numerical functions’, Univ. Wash. Publ. Math. Phys. Sci. I,no. 1 (1915).Google Scholar
  3. [3]
    Cipolla, M.: ‘Sui principi del calculo arithmetico integrale’, Atti Accad. Gioenia Cantonia 5,no. 8 (1915).Google Scholar
  4. [4]
    Cohen, E.: ‘Arithmetical functions associated with the unitary divisors of an integer’, Math. Z. 74 (1960), 66–80.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Dickson, L.E.: History of the theory of numbers, Vol. I, Chelsea, reprint, 1952.Google Scholar
  6. [6]
    Mccarthy, P.J.: Introduction to arithmetical functions, Springer, 1986.Google Scholar
  7. [7]
    Narkiewicz, W.: ‘On a class of arithmetical convolutions’, Colloq. Math. 10 (1963), 81–94.MATHMathSciNetGoogle Scholar
  8. [8]
    Sivaramakrishnan, R.: Classical theory of arithmetic functions, Vol. 126 of Monographs and Textbooks in Pure and Applied Math., M. Dekker, 1989.Google Scholar
  9. [9]
    Subbarao, M.V.: ‘On some arithmetic convolutions’: The Theory of Arithmetic Functions, Vol. 251 of Lecture Notes in Mathematics, Springer, 1972, pp. 247–271.Google Scholar
  10. [10]
    Vaidyanathaswamy, R.: ‘The theory of multiplicative arithmetic functions’, Trans. Amer. Math. Soc. 33 (1931), 579–662.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, second ed., PWN/Springer, 1990, p. Sect. 7.2.Google Scholar

References

  1. [1]
    Ashbaugh, M.S., and Benguria, R.D.: ‘Isoperimetric inequalities for eigenvalue ratios’: Syrup. Math., Vol. 35, Cambridge Univ. Press, 1994, pp. 1–36.MathSciNetGoogle Scholar
  2. [2]
    Bañuelos, R., and Carroll, T.: ‘Brownian motion and the fundamental frequency of a drum’, Duke Math. J. 75 (1994), 575–602.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Brascamp, H., and Lieb, E.H.: ‘On extensions of the Brunn-Minkowski and Prékopa-Leindler theorem, including inequalities for log-concave functions, and with an application to the diffusion equation’, J. Fund. Anal. 22 (1976), 366–389.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Chavel, I.: Eigenvalues in Riemannian geometry, Vol. 115 of Pure Appl. Math., Acad. Press, 1984.Google Scholar
  5. [5]
    Courant, R., and Hilbert, D.: Methoden der mathematischen Physik, Vol. I, Springer, 1931, English transl.: Methods of mathematical physics, vol. I., Interscience, 1953.Google Scholar
  6. [6]
    Davies, E.B.: Heat kernels and spectral theory, Vol. 92 of Tracts in Math., Cambridge Univ. Press, 1989.Google Scholar
  7. [7]
    Gordon, C., Webb, D., and Wolpert, S.: ‘Isospectral plane domains and surfaces via Riemannian orbifolds’, Invent. Math. 110 (1992), 1–22.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Kac, M.: ‘Can one hear the shape of a drum?’, Amer. Math. Monthly 73,no. 4 (1966), 1–23.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Kuttler, J.R., and Sigillito, V.G.: ‘Eigenvalues of the Laplacian in two dimensions’, SIAM Review 26 (1984), 163–193.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Li, P., and Yau, S.T.: ‘On the Schrödinger equation and the eigenvalue problem’, Commun. Math. Phys. 88 (1983), 309–318.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Melas, A.D.: ‘On the nodal line of the second eigenfunction of the Laplacian in R 2’, J. Diff. Geom. 35 (1992), 255–263.MATHMathSciNetGoogle Scholar
  12. [12]
    Osserman, R.: ‘Isoperimetric inequalities and eigenvalues of the Laplacian’: Proc. Internat. Congress of Math. Helsinki, Acad. Sci. Fennica, 1978, pp. 435–441.Google Scholar
  13. [13]
    Pockels, F.: ‘Über die partielle Differentialgleichung Δu + k 2u = 0 und deren Auftreten in die mathematischen Physik’, Z. Math. Physik 37 (1892), 100–105.Google Scholar
  14. [14]
    Polya, G.: ‘On the eigenvalues of vibrating membranes’, Proc. London Math. Soc. 11,no. 3 (1961), 419–433.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Polya, G., and Szegö, G.: Isoperimetric inequalities in mathematical physics, Vol. 27 of Ann. of Math. Stud., Princeton Univ. Press, 1951.Google Scholar
  16. [16]
    Reed, M., and Simon, B.: Methods of modern mathematical physics IV: Analysis of operators, Acad. Press, 1978.Google Scholar
  17. [17]
    Weyl, H.: ‘Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen’, Math. Ann. 71 (1911), 441–479.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Weyl, H.: ‘Ramifications, old and new, of the eigenvalue problem’, Bull. Amer. Math. Soc. 56 (1950), 115–139.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    BENEDETTO, J.J.: Spectral synthesis, Teubner, 1975.Google Scholar
  2. [2]
    Ditkin, V.A.: ‘On the structure of ideals in certain normed rings’, Uchen. Zap. Mosk. Gos. Univ. Mat. 30 (1939), 83–120.MathSciNetGoogle Scholar
  3. [3]
    Graham, C.C., and Mcgehee, O.C.: Essays in commutative harmonic analysis, Springer, 1979.Google Scholar
  4. [4]
    Herz, C.S.: ‘The sprectral theory of bounded functions’, Trans. Amer. Math. Soc. 94 (1960), 181–232.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Hewitt, E., and Ross, K.A.: Abstract harmonic analysis, Vol. 2, Springer, 1970.Google Scholar
  6. [6]
    Kahane, J.-P., and Salem, R.: Ensembles parfaits et séries trigonométriques, Hermann, 1963.Google Scholar
  7. [7]
    Loomis, L.H.: An introduction to abstract harmonic analysis, Van Nostrand, 1953.Google Scholar
  8. [8]
    Reiter, H.: Classical harmonic analysis and locally compact groups, Oxford Univ. Press, 1968.Google Scholar
  9. [9]
    Reiter, H., and Stegeman, J.D.: Classical harmonic analysis and locally compact groups, Oxford Univ. Press, 2000.Google Scholar
  10. [10]
    Rudin, W.: Fourier analysis on groups, Interscience, 1962.Google Scholar
  11. [11]
    Shilov, G.E.: ‘On regular normed rings’, Trav. Inst. Math. Steklov 21 (1947), English summary. (In Russian.)Google Scholar
  12. [12]
    Wik, I.: ‘A strong form of spectral synthesis’, Ark. Mat. 6 (1965), 55–64.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Hoste, J., and Przytycki, J.H.: ‘Homotopy skein modules of oriented 3-manifolds’, Math. Proc. Cambridge Philos. Soc. 108 (1990), 475–488.MATHMathSciNetGoogle Scholar
  2. [2]
    Przytycki, J.H.: ‘Homotopy and g-homotopy skein modules of 3-manifolds: An example in Algebra Situs’: Proc. Conf. in Low-Dimensional Topology in Honor of Joan Birman’s 70th Birthday (Columbia Univ./Barnard College, March, H-15, 1998), Internat. Press, 2000.Google Scholar
  3. [3]
    Turaev, V.G.: ‘Skein quantization of Poisson algebras of loops on surfaces’, Ann. Sci. École Norm. Sup. 4,no. 24 (1991), 635–704.MathSciNetGoogle Scholar

References

  1. [1]
    Bank, R.E.: pltmg: A software package for solving elliptic partial differential equations, Users’ Guide 8.0, SIAM, 1998.Google Scholar
  2. [2]
    Broer, H., and Takens, F. (eds.): Handbook of dynamical systems, Elsevier, to appear, Vol. I: Ergodic Theory (eds. B. Hasselblatt, A. Katok); Vol II: Bifurcation Theory (eds. H. Broer, F. Takens); Vol III: Towards Applications (eds. B. Fiedler, G. Iooss and N. Kopell).Google Scholar
  3. [3]
    Doedel, E.J., Champneys, A.R., Fairgrievb, T.F., Kuznetsov, Yu.A., Sandstede, B., and Wang, X.J.: auto97: Continuation and bifurcation software for ordinary differential equations (with HomCont), User’s Guide, Concordia Univ., 1997.Google Scholar
  4. [4]
    Engelborhgs, K.: ‘dde-biftool: A Matlab package for bifurcation analysis of delay differential equations’, http://www.cs.kuleuven.ac.be/~koen/delay/ddebiftool.shtml (2000).
  5. [5]
    Govaerts, W.: Numerical methods for bifurcations of dynamical equilibria, SIAM, 2000.Google Scholar
  6. [6]
    Guckenheimer, J., and Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Vol. 42 of Applied Math. Sci., Springer, 1983.Google Scholar
  7. [7]
    Kuznetsov, Yu.A.: Elements of applied bifurcation theory, Vol. 112 of Applied Math. Sci., Springer, 1995/98.Google Scholar
  8. [8]
    Kuznetsov, Yu.A., and Levitin, V.V.: ‘content: A multiplatform environment for analyzing dynamical systems’, Dynamical Systems Lab. CWI, Amsterdam (1995/97), ftp://www.cwi.nl/pub/content.
  9. [9]
    Osinga, H.: ‘Website on dynamical systems software’, http://www.maths.ex.ac.uk/~hinke/dss (2000).
  10. [10]

Copyright information

© Kluwer Academic Publishers 2001

Personalised recommendations