Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA))

  • 1041 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akemann, C.A.: ‘Left ideal structure of C*-algebras’, J. Fund. Anal. 6 (1970), 305–317.

    Article  MATH  MathSciNet  Google Scholar 

  2. Berni-Canani, U., Borceux, F., and Succi-Cruciani, R.: ‘A theory of quantale sets’, J. Pure Appl. Algebra 62 (1989), 123–136.

    Article  MATH  MathSciNet  Google Scholar 

  3. Brown, C., and Gurr, D.: ‘A representation theorem for quantales’, J. Pure Appl. Algebra 85 (1993), 27–42.

    Article  MATH  MathSciNet  Google Scholar 

  4. Giles, R., and Kummer, H.: ‘A non-commutative generalization of topology’, Indiana Univ. Math. J. 21 (1971), 91–102.

    Article  MathSciNet  Google Scholar 

  5. Hoare, C.A.R., and Jifeng, He: ‘The weakest prespecification’, Inform. Proc. Lett. 24 (1987), 127–132.

    Article  MATH  Google Scholar 

  6. Mulvey, C.J.: ‘Foulis quantales’, to appear.

    Google Scholar 

  7. Mulvey, C.J.: ‘&’, Rend. Circ. Mat. Palermo 12 (1986), 99–104.

    MathSciNet  Google Scholar 

  8. Mulvey, C.J.: ‘Quantales’: Invited Lecture, Summer Conf. Locales and Topological Groups, Curacao, 1989.

    Google Scholar 

  9. Mulvey, C.J., and Nawaz, M.: ‘Quantales: Quantal sets’: Non-Classical Logics and Their Application to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Kluwer Acad. Publ., 1995, pp. 159–217.

    Google Scholar 

  10. Mulvey, C.J., and Pelletier, J.W.: ‘A quantisation of the calculus of relations’: Category Theory 1991, CMS Conf. Proc, Vol. 13, Amer. Math. Soc, 1992, pp. 345–360.

    MathSciNet  Google Scholar 

  11. Mulvey, C.J., and Pelletier, J.W.: ‘On the quantisation of points’, J. Pure Appl. Algebra 159 (2001), 231–295.

    Article  MATH  MathSciNet  Google Scholar 

  12. Mulvey, C.J., and Pelletier, J.W.: ‘On the quantisation of spaces’, J. Pure Appl. Math, (to appear).

    Google Scholar 

  13. Pelletier, J.W.: ‘Von Neumann algebras and Hilbert quantales’, Appl. Cat. Struct. 5 (1997), 249–264.

    Article  MATH  MathSciNet  Google Scholar 

  14. Rosenthal, K.I.: Quantales and their applications, Vol. 234 of Pitman Research Notes in Math., Longman, 1990.

    Google Scholar 

  15. Rosický, J.: ‘Multiplicative lattices and C*-algebras’, Cah. Topol. Géom. Diff. Cat. 30 (1989), 95–110.

    Google Scholar 

  16. Yetter, D.: ‘Quantales and (non-commutative) linear logic’, J. Symbolic Logic 55 (1990), 41–64.

    Article  MATH  MathSciNet  Google Scholar 

References

  1. Beals, R., Buhrman, H., Cleve, R., Mosca, M., and Wolf, R. de: ‘Quantum lower bounds by polynomials’: Proc. 39th Ann. Symp. Foundations of Computer Sci., IEEE Press, 1998, pp. 352–361.

    Google Scholar 

  2. Buhrman, H., Cleve, R., and Wigderson, A.: ‘Quantum vs. classical communication and computation’: Proc. 30th Ann. ACM Symp. Theory of Computation, ACM Press, 1998, pp. 63–68.

    Google Scholar 

  3. Gruska, J.: Quantum computing, McGraw-Hill, 1999.

    Google Scholar 

  4. Nielsen, M.A., and Chuang, I.L.: Quantum computation and quantum information, Cambridge Univ. Press, 2000.

    Google Scholar 

  5. Raz, R.: ‘Exponential separation of quantum and classical communication complexity’: Proc. 31st Ann. ACM Symp. Theory of Computing (STOCEQT99), 1999, pp. 358–367.

    Google Scholar 

  6. Special focus issue: ‘Experimental proposals for quantum computation’, Fortschr. Phys. 48 (2000), 767–1138.

    Google Scholar 

References

  1. Bennett, C.H., Divincenzo, D.P., Smolin, J.A., and Wootters, W.K.: ‘Mixed state entanglement and quantum error-correcting codes’, Phys. Rev. A 54 (1996), 3824–3851.

    Article  MathSciNet  Google Scholar 

  2. Gruska, J.: Quantum computing, McGraw-Hill, 1999.

    Google Scholar 

  3. Horodecki, M., Horodecki, P., and Horodecki, R.: ‘Separability of mixed states: necessary and sufficient conditions’, Phys. Lett. A 223,no. 1–2 (1996), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  4. Nielsen, M.A.: ‘A partial order on the entangled states’, quant-ph/9811053 (1998).

    Google Scholar 

  5. Nielsen, M.A., and Chuang, I.L.: Quantum computation and quantum information, Cambridge Univ. Press, 2000.

    Google Scholar 

  6. Ohya, M., and Petz, D.: Quantum entropy and its use, Springer, 1993.

    Google Scholar 

  7. Special focus issue: ‘Experimental proposals for quantum computation’, Fortschr. Phys. 48 (2000), 767–1138.

    Google Scholar 

  8. Wehrl, A.: ‘General properties of entropy’, Rev. Mod. Phys. 50 (1978), 221.

    Article  MathSciNet  Google Scholar 

References

  1. Anderson, G.D., Vamanamurthy, M.K., and Vuorinen, M.: Conformal invariants, inequalities and quasiconformal mappings, Wiley, 1997, book with a software diskette.

    Google Scholar 

  2. Heinonen, J., Kilpeläinen, T., and Martio, O.: Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monographs. Oxford Univ. Press, 1993.

    Google Scholar 

  3. Iwaniec, T.: “p-Harmonic tensors and quasiregular mappings’, Ann. of Math. 136 (1992), 39–64.

    Article  MathSciNet  Google Scholar 

  4. Lehto, O., and Virtanen, K.I.: Quasiconformal mappings in the plane, second ed., Vol. 126 of Grundl. Math. Wissenschaft., Springer, 1973.

    Google Scholar 

  5. Reshetnyak, Yu.G.: Space mappings with bounded distortion, Vol. 73 of Transl. Math. Monogr., Amer. Math. Soc, 1989. (In Russian.)

    Google Scholar 

  6. Reshetnyak, Yu.G.: Stability theorems in geometry and analysis, Kluwer Acad. Publ., 1994.

    Google Scholar 

  7. Rickman, S.: Quasiregular mappings, Vol. 26 of Ergeb. Math. Grenzgeb., Springer, 1993.

    Google Scholar 

  8. Väisälä, J.: Lectures on n-dimensional quasiconformal mappings, Vol. 229 of Lecture Notes in Mathematics, Springer, 1971.

    Google Scholar 

  9. Vuorinen, M.: Conformal geometry and quasiregular mappings, Vol. 1319 of Lecture Notes in Mathematics, Springer, 1988.

    Google Scholar 

  10. Vuorinen, M. (ed.): Quasiconformal space mappings: A collection of surveys, 1960–1990, Vol. 1508 of Lecture Notes in Mathematics, Springer, 1992.

    Google Scholar 

References

  1. Beurling, A., and Ahlfors, L.V.: ‘The boundary correspondence under quasiconformal mappings’, Acta Math. 96 (1956), 125–142.

    Article  MATH  MathSciNet  Google Scholar 

  2. Kelingos, J.A.: Contributions to the theory of quasiconformal mappings, Diss. Univ. Michigan, 1963.

    Google Scholar 

  3. Krzyż, J.G.: ‘Quasicircles and harmonic measure’, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 12 (1987), 19–24.

    MathSciNet  Google Scholar 

  4. Krzyż, J.G., and Nowak, M.: ‘Harmonic automorphisms of the unit disk’, J. Comput. Appl. Math. 105 (1999), 337–346.

    Article  MathSciNet  Google Scholar 

  5. Lehtinen, M.: ‘Remarks on the maximal dilatations of the Beurling-Ahlfors extension’, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 9 (1984), 133–139.

    MathSciNet  Google Scholar 

  6. Lehto, O., and Virtanen, K.I.: Quasiconformal mappings in the plane, Springer, 1973.

    Google Scholar 

  7. Partyka, D.: ‘A sewing theorem for complementary Jordan domains’, Ann. Univ. Mariae Curie-Skłodowska Sect. A 41 (1987), 99–103.

    MATH  MathSciNet  Google Scholar 

  8. Pommerenke, C.H.: Boundary behaviour of conformal maps, Springer, 1992.

    Google Scholar 

  9. Tukia, P., and Väisälä, J.: ‘Quasisymmetric embeddings of metric spaces’, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 5 (1980), 97–114.

    MathSciNet  Google Scholar 

Download references

Editor information

M. Hazewinkel

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2001). Q. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics, Supplement III. Encyclopaedia of Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-0-306-48373-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48373-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0198-7

  • Online ISBN: 978-0-306-48373-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics