Keywords

Moment Problem Magnetic Monopole Vertex Operator Algebra Inductive Logic Programming Closed Convex Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chauvin, Y., and Rumelhart, D.E. (eds.): Backpropagation: Theory, architectures and applications, Lawrence Erlbaum, 1993.Google Scholar
  2. [2]
    Ellman, T.: ‘Explanation-based learning: A survey of programs and perspectives’, ACM Computing Surveys 21,no. 2 (1989), 163–221.CrossRefGoogle Scholar
  3. [3]
    Kearns, M., and Vazirani, U.: An introduction to computational learning theory, MIT, 1994.Google Scholar
  4. [4]
    Li, M., and Vitanyi, P.: An introduction to Kolmogorov complexity and its applications, Springer, 1993.Google Scholar
  5. [5]
    Mitchell, T.: Machine learning, McGraw-Hill, 1997.Google Scholar
  6. [6]
    Muggleton, S.: Foundations of inductive logic programming, Prentice-Hall, 1995.Google Scholar
  7. [7]
    Quinlan, J.R.: C4.5: Programs for machine learning, Kaufmann, 1993.Google Scholar
  8. [8]
    Russell, S.J.: The use of knowledge in analogy and induction, Pitman, 1989.Google Scholar
  9. [9]
    Shrager, J., and Langley, P.: Computational models of scientific discovery and theory formation, Kaufmann, 1990.Google Scholar
  10. [10]
    Sutton, R.S., and Barto, A.G.: Reinforcement learning. An introduction, MIT, 1998.Google Scholar
  11. [11]
    Weiss, S., and Kulikowski, C.: Computer systems that learn. Classification and prediction methods from statistics, neural nets, machine learning and expert systems, Kaufmann, 1991.Google Scholar

References

  1. [1]
    Atiyah, M.F.: ‘Magnetic monopoles in hyperbolic space’: Vector bundles on algebraic varieties, Oxford Univ. Press, 1987, pp. 1–34.Google Scholar
  2. [2]
    Atiyah, M.F., and Hitchin, N.J.: The geometry and dynamics of magnetic monopoles, Princeton Univ. Press, 1988.Google Scholar
  3. [3]
    Donaldson, S.K.: ‘Nahm’s equations and the classification of monopoles’, Commun. Math. Phys. 96 (1984), 397–407.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Hitchin, N.J.: ‘Monopoles and geodesies’, Commun. Math. Phys. 83 (1982), 579–602.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Hitchin, N.J.: ‘On the construction of monopoles’, Commun. Math. Phys. 89 (1983), 145–190.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Hitchin, N.J.: ‘Integrable systems in Riemannian geometry’, in C.-L. Terng and K. Uhlenbeck (eds.): Surveys in Differential Geometry, Vol. 4, Internat. Press, Cambridge, Mass., 1999, pp. 21–80.Google Scholar
  7. [7]
    Hitchin, N.J., Manton, N.S., and Murray, M.K.: ‘Symmetric monopoles’, Nonlinearity 8 (1995), 661–692.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Hitchin, N.J., and Murray, M.K.: ‘Spectral curves and the ADHM method’, Commun. Math. Phys. 114 (1988), 463–474.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Hurtubise, J., and Murray, M.K.: ‘On the construction of monopoles for the classical groups’, Commun. Math. Phys. 122 (1989), 35–89.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Jaffe, A., and Taubes, C.H.: Vortices and monopoles, Vol. 2 of Progress in Physics, Birkhäuser, 1980.Google Scholar
  11. [11]
    Murray, M.K.: ‘Monopoles and spectral curves for arbitrary Lie groups’, Commun. Math. Phys. 90 (1983), 263–271.MATHCrossRefGoogle Scholar
  12. [12]
    Murray, M.K.: ‘On the complete integrability of the discrete Nahm equations’, Commun. Math. Phys. 210 (2000), 497–519.MATHCrossRefGoogle Scholar
  13. [13]
    Nahm, W.: ‘The construction of all self-dual monopoles by the ADHM method’, in N.S. Craigie, P. Goddard, and W. Nahm (eds.): Monopoles in Quantum Field Theory, World Sci., 1982.Google Scholar
  14. [14]
    Segal, G.B., and Selby, A.: ‘The cohomology of the space of magnetic monopoles’, Commun. Math. Phys. 177 (1996), 775–787.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Sutclifpe, P.M.: ‘BPS monopoles’, Internat. J. Modern Phys. A 12 (1997), 4663–4705.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Taubes, C.H.: ‘Stability in Yang-Mills theories’, Commun. Math. Phys. 91 (1983), 235–263.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Mahler, K.: ‘Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichung’, Math. Ann. 101 (1929), 342–366, Corrigendum: 103 (1930), 532.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Mahler, K.: ‘Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen’, Math. Z. 32 (1930), 545–585.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Mahler, K.: ‘Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen’, Math. Ann. 103 (1930), 573–587.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Mahler, K.: ‘Remarks on a paper by W. Schwarz’, J. Number Theory 1 (1969), 512–521.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Nishioka, K.: Mahler functions and transcendence, Vol. 1631 of Lecture Notes in Mathematics, Springer, 1996.Google Scholar

References

  1. [1]
    Birman, J.S.: Braids, links and mapping class groups, Ann. of Math. Stud. Princeton Univ. Press, 1974.Google Scholar
  2. [2]
    Markov, A.A.: ‘Über die freie Aquivalenz der geschlossen Zopfe’, Recueil Math. Moscou 1 (1935), 73–78.Google Scholar
  3. [3]
    Weinberg, N.M.: ‘On free equivalence of free braids’, C.R. (Dokl.) Acad. Sci. USSR 23 (1939), 215–216. (In Russian.)Google Scholar

References

  1. [1]
    Brownawell, W.D.: ‘Local diophantine Nullstellen equalities’, J. Amer. Math. Soc. 1 (1988), 311–322.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Kollár, J.: ‘Sharp effective Nullstellensatz’, J. Amer. Math. Soc. 1 (1988), 963–975.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Mayr, E.W., and Meyer, A.R.: ‘The complexity of the word problems in commutative semigroups and polynlomial ideals’, Adv. Math. 46 (1982), 305–329.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Albeverio, S.: ‘Mathematical physics and stochastic analysis’, Bell. Sci. Math. 117 (1993), 125.MATHGoogle Scholar
  2. [2]
    Albeverio, S., Gottschalk, H., and Wu, J.-L.: ‘Scattering behaviour of quantum vector fields obtained from Euclidean covariant SPDEs’, Kept. Math. Phys. 44,no. 1 (1999), 21.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Buchholz, D., and Vrech, R.: ‘Scaling algebras and renormalization group in algebraic quantum field theory’, Rev. Math. Phys. 7 (1995).Google Scholar
  4. [4]
    Glimm, J., and Jaffe, A.: Quantum physics: A functional integral point of view, second ed., Springer, 1987.Google Scholar
  5. [5]
    Haac, R.: ‘Quantum field theories with composite particles and asymptotic condition’, Phys. Rev. 112 (1958), 669.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Hepp, K.: ‘On the connection between LSZ and Wightman quantum field theory’, Commun. Math. Phys. 1 (1965), 95.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Jost, R.: The general theory of quantized fields, Amer. Math. Soc, 1965.Google Scholar
  8. [8]
    Kuksin, S.B.: ‘On the long-time behaviour of solutions of nonlinear wave equations’, in D. Iagolnitzer (ed.): XIth Int. Cong. Math. Phys., Cambridge Internat. Press, 1995, pp. 273–277.Google Scholar
  9. [9]
    Lehmann, H., Symanzik, K., and Zimmermann, W.: ‘Zur Formulierung quantisierter Feldtheorien’, Il Nuovo Cimento 1 (1954), 205.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Rühl, W.: The Lorentz group and harmonic analysis, Benjamin, 1970.Google Scholar
  11. [11]
    Ruelle, D.: ‘On the asymptotic condition in quantum field theory’, Helv. Phys. Ada 35 (1962), 147.MATHMathSciNetGoogle Scholar
  12. [12]
    Simon, B.: The P(ϕ) 2 Euclidean (quantum) field theory, Princeton Univ. Press, 1975.Google Scholar
  13. [13]
    Strauss, W.: Nonlinear wave equations, Amer. Math. Soc, 1989.Google Scholar
  14. [14]
    Streater, R.: ‘Uniqueness of the Haag-Ruelle scattering states’, J. Math. Phys. 8 (1967), 1685–1693.MATHCrossRefGoogle Scholar
  15. [15]
    Streater, R.F., and Wightman, A.S.: PCT spin & statistics and all that…, Benjamin, 1964.Google Scholar
  16. [16]
    Wigner, E.P.: ‘On unitary representations of the inhomoge-nous Lorentz group’, Ann. Math. 40 (1939), 149.MathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Albeverio, S., Gottschalk, H., and Wu, J.-L.: ‘Models of local, relativistic quantum fields with indefinite metric (in all dimensions)’, Commun. Math. Phys. 184 (1997), 509.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Albeverio, S., Gottschalk, H., and Wu, J.-L.: ‘Nontrivial scattering amplitudes for some local, relativistic quantum field models with indefinite metric’, Phys. Lett. B 405 (1997), 243.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Buchholz, D.: ‘Collision theory for massless Fermions’, Commun. Math. Phys. 42 (1975), 269.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Buchholz, D.: ‘Collision theory for massless Bosons’, Commun. Math. Phys. 52 (1977), 147.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Buchholz, D.: ‘The physical state space of quantum electro-dynamics’, Commun. Math. Phys. 85 (1982), 49.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Buchholz, D.: ‘On the manifestation of particles’, in A.N. Sen and A. Gersten (eds.): Proc. Beer Sheva Conf. (1993): Math. Phys. Towards the 21st Century, Ben Gurion of the Negev Press, 1994.Google Scholar
  7. [7]
    Buchholz, D., Doplicher, S., Longo, R., and Roberts, J.E.: ‘A new look at Goldstone’s theorem’, Rev. Math. Phys., Special Issue 49 (1992).Google Scholar
  8. [8]
    Morchio, G., and Strocchi, F.: ‘Infrared singularities, vacuum structure and pure phases in local quantum field theory’, Ann. Inst. H. Poincaré B33 (1980), 251.MathSciNetGoogle Scholar
  9. [9]
    Schroer, B.: ‘Infrateilchen in der Quantenfeldtheorie’, Fortschr. Phys. 173 (1963), 1527.MathSciNetGoogle Scholar
  10. [10]
    Streater, R.F., and Wightman, A.S.: PCT spin & statistics and all that…, Benjamin, 1964.Google Scholar
  11. [11]
    Strocchi, F.: ‘Local and covariant gauge quantum field theories, cluster property, superselection rules and the infrared problem’, Phys. Rev. D17 (1978), 2010.MathSciNetGoogle Scholar
  12. [12]
    Strocchi, F., and Wightman, A.S.: ‘Proof of the charge superselection rule in local, relativistic quantum field theory’, J. Math. Phys. 15 (1974), 2198.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Weinberg, S.: The quantum theory of fields, Vol. I–II, Cambridge Univ. Press, 1995.Google Scholar
  14. [14]
    Wigner, E.P.: ‘On unitary representations of the inhomogenous Lorentz group’, Ann. Math. 40 (1939), 149.MathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Fulling, S.A.: Aspects of quantum field theory in curved space-time, Cambridge Univ. Press, 1989.Google Scholar
  2. [2]
    Gordon, O.: ‘Der Comptoneffekt nach der Schrödingerschen Theorie’, Z. f. Phys. 40 (1926), 117.CrossRefGoogle Scholar
  3. [3]
    Gross, L.: ‘Norm invariance of mass zero equations under the conformal group’, J. Math. Phys. 5 (1964), 687–695.MATHCrossRefGoogle Scholar
  4. [4]
    Jager, E.M. de: ‘The Lorentz-invariant solutions of the Klein-Gordon equation I-II’, Indag. Math. 25 (1963), 515–531; 546–558.Google Scholar
  5. [5]
    Jost, R.: The general theory of quantised fields, Amer. Math. Soc, 1965.Google Scholar
  6. [6]
    Klein, O.: ‘Quantentheorie und fünfdimensionale Relativitätstheorie’, Z. f. Phys. 37 (1926), 895.CrossRefGoogle Scholar
  7. [7]
    Schrödinger, E.: ‘Quantisierung als Eigenwertproblem II’, Ann. Phys. 81 (1926), 109.CrossRefGoogle Scholar
  8. [8]
    Weinberg, S.: The quantum theory of fields, Vol. I, Cambridge Univ. Press, 1995.Google Scholar

References

  1. [1]
    Farrell, E.J.: ‘Introduction to matching polynomials’, J. Combin. Th. B 27 (1979), 75–86.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Farrell, E.J.: ‘On a general class of graph polynomials’, J. Combin. Th. B 26 (1979), 111–122.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Farrell, E.J.: ‘The matching polynomial and its relation to the acyclic polynomial of a graph’, Ars Combinatoria 9 (1980), 221–228.MATHMathSciNetGoogle Scholar
  4. [4]
    Farrell, E.J.: ‘A graph-theoretic approach to Rook theory’, Caribb. J. Math. 7 (1988), 1–47.MATHMathSciNetGoogle Scholar
  5. [5]
    Farrell, E.J.: ‘The matching polynomial and its relation to the Rook polynomial’, J. Franklin Inst. 325,no. 4 (1988), 527–536.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Farrell, E.J., and Guo, J.M.: ‘On the characterizing properties of the matching polynomial’, Vishwa Internat. J. Graph Th. 2,no. 1 (1993), 55–62.Google Scholar
  7. [7]
    Farrell, E.J., Guo, J.M., and Constantine, G.M.: ‘On the matching coefficients’, Discr. Math. 89 (1991), 203–210.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Farrell, E.J., and Wahid, S.A.: ‘Some analytical properties of the matching polynomial of a graph’: Proc. Fifth Caribb. Conf. in Comb, and Graph Th., Jan.5–8, 1988, pp. 105–119.Google Scholar
  9. [9]
    Farrell, E.J., and Wahid, S.A.: ‘Matching polynomials: A matrix approach and its applications’, J. Franklin Inst. 322 (1986), 13–21.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Farrell, E.J., and Wahid, S.A.: ‘Some general classes of comatching graphs’, Internat. J. Math. Math. Sci. 10,no. 3 (1987), 519–524.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Farrell, E.J., and Wahid, S.A.: ‘D-graphs I: An introduction to graphs whose matching polynomials are determinants of matrices’, Bull. ICA 15 (1995), 81–86.MATHMathSciNetGoogle Scholar
  12. [12]
    Farrell, E.J., and Wahid, S.A.: ‘D-graphs II: Constructions of D-graphs for some families of graphs with even cycles’, Utilitas Math. 56 (1999), 167–176.MATHMathSciNetGoogle Scholar
  13. [13]
    Farrell, E.J., and Whitehead, E.G.: ‘Connections between the matching and chromatic polynomials’, Internat. J. Math. Math. Sci. 15,no. 4 (1992), 757–766.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Godsil, C.D., and Gutman, I.: ‘On the theory of the matching polynomial’, J. Graph Th. 5 (1981), 137–145.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Gutman, I.: ‘The acyclic polynomial of a graph’, Publ. Inst. Math. Beograd 22(36) (1977), 63–69.MathSciNetGoogle Scholar
  16. [16]
    Gutman, I.: ‘The matching polynomial’, MATCH, no. 6 (1979), 75–91.MATHGoogle Scholar

References

  1. [1]
    Chandrasekhariah, D.S., and Debnath, L.: Continuum mechanics, Acad. Press, 1994.Google Scholar
  2. [2]
    Fung, Y.C.: Foundations of solid mechanics, Prentice-Hall, 1965.Google Scholar

References

  1. [1]
    Bapat, R.B., Grossman, J.W., and Kulkarni, D.M.: ‘Generalized matrix tree theorem for mixed graphs’, Linear and Multilinear Algebra 46 (1999), 299–312.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Bapat, R.B., Grossman, J.W., and Kulkarni, D.M.: ‘Edge version of the matrix tree theorem for trees’, Linear and Multilinear Algebra 47 (2000), 217–229.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Biggs, N.: Algebraic graph theory, second ed., Cambridge Univ. Press, 1993.Google Scholar
  4. [4]
    Cayley, A.: ‘A theorem on trees’, Quart. J. Math. 23 (1889), 376–378.Google Scholar
  5. [5]
    Chaiken, S.: ‘A combinatorial proof of the all minors matrix tree theorem’, SIAM J. Algebraic Discr. Math. 3,no. 3 (1982), 319–329.MATHMathSciNetGoogle Scholar
  6. [6]
    Chebotarev, P.Yu., and Shamis, E.V.: ‘The matrix-forest theorem and measuring relations in small social groups’, Automat. Remote Control 58,no. 9:2 (1997), 1505–1514.MATHMathSciNetGoogle Scholar
  7. [7]
    Constantine, G.M.: Combinatorial theory and statistical design, Wiley, 1987.Google Scholar
  8. [8]
    Goulden, I.P., and Jackson, D.M.: Combinatorial enumeration, Wiley, 1983.Google Scholar
  9. [9]
    Kirchhofp, G.: ‘Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird’, Ann. Phys. Chera. 72 (1847), 497–508.CrossRefGoogle Scholar
  10. [10]
    Mayeda, W.: Graph theory, Wiley, 1972.Google Scholar
  11. [11]
    Merris, R.: ‘An edge version of the matrix-tree theorem and the Wiener index’, Linear and Multilinear Algebra 25 (1989), 291–296.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Merris, R.: ‘Laplacian matrices of graphs: a survey’, Linear Alg. & Its Appl. 197/198 (1994), 143–176.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Moon, J.W.: ‘Various proofs of Cayley’s formula for counting trees’, in F. Harary (ed.): A Seminar on Graph Theory, Holt, Rinehart & Winston, 1967, pp. 70–78.Google Scholar
  14. [14]
    Moon, J.W.: Counting labeled trees, Vol. 1 of Canad. Math. Monographs, Canad. Math. Congress, 1970.Google Scholar
  15. [15]
    Seneta, E.: Non-negative matrices and Markov chains, second ed., Springer, 1981.Google Scholar
  16. [16]
    Tutte, W.T.: ‘The disection of equilateral triangles into equilateral triangles’, Proc. Cambridge Philos. Soc. 44 (1948), 463–482.MATHMathSciNetGoogle Scholar
  17. [17]
    West, D.B.: Introduction to graph theory, Prentice-Hall, 1996.Google Scholar

References

  1. [1]
    Ahern, P., Flores, M., and Rudin, W.: ‘An invariant volume-mean-value property’, J. Fund. Anal. 11 (1993), 380–397.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Aizenberg, L.A.: ‘Pluriharmonic functions’, Dokl. Akad. Nauk. SSSR 124 (1959), 967–969. (In Russian.)MathSciNetGoogle Scholar
  3. [3]
    Aizenberg, L.A., Berenstein, C.A., and Wertheim, L.: ‘Mean-value characterization of pluriharmonic and separately harmonic functions’, Pacific J. Math. 175 (1996), 295–306.MathSciNetGoogle Scholar
  4. [4]
    Aizenberg, L., and Liflyand, E.: ‘Mean-value characterization of holomorphic and pluriharmonic functions’, Complex Variables 32 (1997), 131–146.MathSciNetGoogle Scholar
  5. [5]
    Aizenberg, L., and Liflyand, E.: ‘Mean-value characterization of holomorphic and pluriharmonic functions, II’, Complex Variables 39 (1999), 381–390.MathSciNetGoogle Scholar
  6. [6]
    Ben Natan, Y., and Weit, Y.: ‘Integrable harmonic functions on Rn’, J. Fund. Anal. 150 (1997), 471–477.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Ben Natan, Y., and Weit, Y.: ‘Integrable harmonic functions and symmetric spaces of rank one’, J. Fund. Anal. 160 (1998), 141–149.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Benyamini, Y., and Weit, Y.: ‘Functions satisfying the mean value property in the limit’, J. Anal. Math. 52 (1989), 167–198.MATHMathSciNetGoogle Scholar
  9. [9]
    Berenstein, C.A., and Gay, R.: ‘A local version of the two-circles theorem’, Israel J. Math. 55 (1986), 267–288.MATHMathSciNetGoogle Scholar
  10. [10]
    Berenstein, C.A., and Zalcman, L.: ‘Pompeiu’s problem on symmetric spaces’, Comment. Math. Helv. 55 (1980), 593–621.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Delsarte, J.: Lectures on topics in mean periodic functions and the two-radius theorem, Tata Institute, Bombay, 1961.Google Scholar
  12. [12]
    Hansen, W.: ‘Restricted mean value property and harmonic functions’, in J. Kral et al. (eds.): Potential Theory-ICPT 94 (Proc. Intern. Conf., Konty), de Gruyter, 1996, pp. 67–90.Google Scholar
  13. [13]
    Hansen, W., and Nadirashvili, N.: ‘A converse to the mean value theorem for harmonic functions’, Ada Math. 171 (1993), 139–163.MATHMathSciNetGoogle Scholar
  14. [14]
    Hansen, W., and Nadirashvili, N.: ‘Littlewood’s one circle problem’, J. London Math. Soc. 50 (1994), 349–360.MATHMathSciNetGoogle Scholar
  15. [15]
    Netuka, I., and Vesely, J.: ‘Mean value property and harmonic functions’, in K. Gowrisankaran et al. (eds.): Classical and Modern Potential Theory and Applications, Kluwer Acad. Publ., 1994, pp. 359–398.Google Scholar
  16. [16]
    Opial, Z., and Siciak, J.: ‘Integral formulas for function holomorphic in convex n circular domains’, Zeszyty Nauk. Uniw. Jagiello. Prace Mat. 9 (1963), 67–75.MathSciNetGoogle Scholar
  17. [17]
    Rudin, W.: Function theory in the unit ball of C n, Springer, 1980.Google Scholar
  18. [18]
    Temlyakov, A.A.: ‘Integral representation of functions of two complex variables’, Izv. Akad. Nauk. SSSR Ser. Mat. 21 (1957), 89–92. (In Russian.)MathSciNetGoogle Scholar
  19. [19]
    Volchkov, V.V.: ‘New theorems on the mean for solutions of the Helmholtz equation’, Russian Acad. Sci. Sb. Math. 79 (1994), 281–286.MathSciNetCrossRefGoogle Scholar
  20. [20]
    Volchkov, V.V.: ‘New two-radii theorems in the theory of harmonic functions’, Russian Acad. Sci. Izv. Math. 44 (1995), 181–192.MathSciNetCrossRefGoogle Scholar
  21. [21]
    Volchkov, V.V.: ‘The final version of the mean value theorem for harmonic functions’, Math. Notes 59 (1996), 247–252.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Zalcman, L.: ‘Mean values and differential equations’, Israel J. Math. 14 (1973), 339–352.MATHMathSciNetGoogle Scholar
  23. [23]
    Zalcman, L.: ‘Offbeat integral geometry’, Amer. Math. Monthly 87 (1980), 161–175.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Kronheimer, P.B., and Mrowka, T.S.: ‘Gauge theory for embedded surfaces I’, Topology 32,no. 4 (1993), 773–826.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Barnabei, M., Brini, A., and Rota, G.-C: ‘Theory of Möbius functions’, Russian Math. Surveys 3 (1986), 135–188.CrossRefGoogle Scholar
  2. [2]
    Björner, A.: ‘Homology and shellability of matroids and geometric lattices’, in N.L. WHITE (ed.): Matroid Applications, Cambridge Univ. Press, 1992, pp. 226–283.Google Scholar
  3. [3]
    Kung, J.P.S.: ‘Radon transforms in combinatorics and lattice theory’, in I. Rival (ed.): Combinatorics and Ordered Sets, Amer. Math. Soc, 1986, pp. 33–74.Google Scholar
  4. [4]
    Rota, G.-C.: ‘On the foundations of combinatorial theory I: Theory of MÖbius functions’, Z. Wahrsch. Verw. Gebiete 2 (1964), 340–368.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Akhiezer, N.L.: The classical moment problem, Oliver & Boyd, 1969. (Translated from the Russian.)Google Scholar
  2. [2]
    Shohat, J.A., and Tamarkin, J.D.: The problem of moments, Vol. 1 of Math. Surveys, Amer. Math. Soc, 1943. (Translated from the Russian.)Google Scholar

References

  1. [1]
    Alekseev, A., Malkin, A., and Meinrenken, E.: ‘Lie group valued moment maps’, J. Diff. Geom. 48 (1998), 445–495.MATHMathSciNetGoogle Scholar
  2. [2]
    Kirillov, A.A.: Elements of the theory of representations, Springer, 1976.Google Scholar
  3. [3]
    Kostant, B.: ‘Orbits, symplectic structures, and representation theory’: Proc. United States-Japan Sem. Diff. Geom., Nippon Hyoronsha, 1966, p. 71.Google Scholar
  4. [4]
    Libermann, P., and Marle, C.M.: Symplectic geometry and analytic mechanics, Reidel, 1987.Google Scholar
  5. [5]
    Lie, S.: Theorie der Transformationsgruppen, Zweiter Abschnitt, Teubner, 1890.Google Scholar
  6. [6]
    Marmo, G., Saletan, E., Simoni, A., and Vitale, B.: Dynamical systems. A differential geometric approach to symmetry and reduction, Wiley/Interscience, 1985.Google Scholar
  7. [7]
    Marsden, J., and Ratiu, T.: Introduction to mechanics and symmetry, second ed., Springer, 1999.Google Scholar
  8. [8]
    Neeb, K.-H.: Holomorphy and convexity in Lie theory, de Gruyter, 1999.Google Scholar
  9. [9]
    Souriau, J.M.: ‘Quantification géométrique’, Commun. Math. Phys. 1 (1966), 374–398.MathSciNetMATHGoogle Scholar

References

  1. [1]
    Chen, Q.: ‘The 3-move conjecture for 5-braids’: Knots in Hellas’ 98 (Proc. Internat. Conf. Knot Theory and Its Ramifications, Vol. 24 of Knots and Everything, 2000, pp. 36–47.Google Scholar
  2. [2]
    Kirby, R.: ‘Problems in low-dimensional topology’, in W. Kazez (ed.): Geometric Topology (Proc. Georgia Internat. Topol. Conf. 1993), Vol. 2:2 of Stud. Adv. Math., Amer. Math. Soc./IP, 1997, pp. 35–473.Google Scholar
  3. [3]
    Morton, H.R.: ‘Problems’, in J.S. Birman and A. Lib-gober (eds.): Braids (Santa Cruz, 1986), Vol. 78 of Con-temp. Math., Amer. Math. Soc, 1988, pp. 557–574.Google Scholar
  4. [4]
    Przytycki, J.H., and Tsukamoto, T.: ‘The fourth skein module and the Montesinos-Nakanishi conjecture for 3-algebraic links’, J. Knot Th. Ramifications to appear (2001).Google Scholar

References

  1. [1]
    Alexander, D., Cummins, C., Mckay, J., and Simons, C.: ‘Completely replicable functions’: Groups, Combinatorics and Geometry, Cambridge Univ. Press, 1992, pp. 87–98.Google Scholar
  2. [2]
    Borcherds, R.E.: ‘Vertex algebras, Kac-Moody algebras, and the Monster’, Proc. Nat. Acad. Sci. USA 83 (1986), 3068–3071.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Borcherds, R.E.: ‘Generalized Kac-Moody algebras’, J. Algebra 115 (1988), 501–512.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Borcherds, R.E.: ‘Monstrous moonshine and monstrous Lie superalgebras’, Invent. Math. 109 (1992), 405–444.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Borcherds, R.E.: ‘Modular moonshine III’, Duke Math. J. 93 (1998), 129–154.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Borcherds, R.E.: ‘What is Moonshine?’: Proc. ICM, Berlin, DMV, 1998, pp. 607–615.Google Scholar
  7. [7]
    Conway, J.H., and Norton, S.P.: ‘Monstrous moonshine’, Bull. London Math. Soc. 11 (1979), 308–339.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Cummins, C., and Gannon, T.: ‘Modular equations and the genus 0 property of Moonshine functions’, Invent. Math. 129 (1997), 413–443.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Dixon, L., Ginsparg, P., and Harvey, J.: ‘Beauty and the Beast: superconformal symmetry in a Monster module’, Commun. Math. Phys. 119 (1988), 221–241.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Dong, C., Li, H., and Mason, G.: ‘Modular invariance of trace functions in orbifold theory’, preprint q-alg/9703016 (1997).Google Scholar
  11. [11]
    Frenkel, I.B., Lepowsky, J., and Meurman, A.: Vertex operators and the monster, Acad. Press, 1988.Google Scholar
  12. [12]
    Griess, R.L.: ‘The friendly giant’, Invent. Math. 69 (1982), 1–102.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Hirzebruch, F., Berger, T., and Jung, R.: Manifolds and modular forms, second ed., Aspects of Math. Vieweg, 1994.Google Scholar
  14. [14]
    Norton, S.P.: ‘Generalized moonshine’, Proc. Symp. Pure Math. 47 (1987), 208–209.MathSciNetGoogle Scholar
  15. [15]
    Queen, L.: ‘Modular functions arising from some finite groups’, Math. Comput. 37 (1981), 547–580.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Ryba, A.J.E.: ‘Modular moonshine?’: Moonshine, the Monster, and Related Topics, Vol. 193 of Contemp. Math., Amer. Math. Soc, 1996, pp. 307–336.Google Scholar
  17. [17]
    Smith, G.W.: ‘Replicant powers for higher genera’: Moonshine, the Monster, and Related Topics, Vol. 193 of Contemp. Math., Amer. Math. Soc, 1996, pp. 337–352.Google Scholar
  18. [18]
    Tuite, M.P.: ‘On the relationship between Monstrous moonshine and the uniqueness of the Moonshine module’, Commun. Math. Phys. 166 (1995), 495–532.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Zhu, Y.: ‘Modular invariance of characters of vertex operator algebras’, J. Amer. Math. Soc. 9 (1996), 237–302.MATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Kawamata, Y.: ‘The cone of curves of algebraic varieties’, Ann. of Math. 119 (1984), 603–633.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Kawamata, Y.: ‘Termination of log-flips for algebraic 3-folds’, Internat. J. Math. 3 (1992), 653–659.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Kawamata, Y., Matsuda, K., and Matsuki, K.: ‘Introduction to the minimal model problem’, Adv. Stud. Pure Math. 10 (1987), 283–360.MathSciNetGoogle Scholar
  4. [4]
    Mori, S.: ‘Threefolds whose canonical bundles are not numerically effective’, Ann. of Math. 116 (1982), 133–176.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Mori, S.: ‘Flip theorem and the existence of minimal models for 3-folds’, J. Amer. Math. Soc. 1 (1988), 117–253.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Shokurov, V.: ‘The nonvanishing theorem’, Izv. Akad. Nauk. SSSR 49 (1985), 635–651.MathSciNetGoogle Scholar
  7. [7]
    Shokurov, V.: ‘3-fold log flips’, Izv. Russian Akad. Nauk. 56 (1992), 105–203.Google Scholar

References

  1. [1]
    Fan, K.: ‘Systems of linear inequalities’, in H.W. Kuhn and A.W. Tucker (eds.): Linear Inequalities and Related Systems, Vol. 38 of Ann. of Math. Stud., Princeton Univ. Press, 1956, pp. 99–156.Google Scholar
  2. [2]
    Farkas, J.: ‘Über die Theorie der einfachen Ungleichungen’, J. Reine Angew. Math. 124 (1902), 1–24.Google Scholar
  3. [3]
    Gordan, P.: ‘Über die Auflösungen linearer Gleighungen mit reelen Coefficienten’, Math. Ann. 6 (1873), 23–28.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Ktjhn, H.W., and Tucker, A.W. (eds.): Linear inequalities and related systems, Vol. 38 of Ann. of Math. Stud., Princeton Univ. Press, 1956.Google Scholar
  5. [5]
    Mangasarian, O.L.: Nonlinear programming, McGraw-Hill, 1969.Google Scholar
  6. [6]
    Motzkin, T.S.: ‘Beiträge zur Theorie der linearen Ungleichungen’, Inaugural Diss. (Basel, Jerusalem) (1936).Google Scholar
  7. [7]
    Motzkin, T.S.: ‘Two consequences of the transposition theorem on linear inequalities’, Econometrica 19 (1951), 184–185.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Rockafellar, R.T.: Convex analysis, Princeton Univ. Press, 1970.Google Scholar
  9. [9]
    Schrijver, A.: Theory of linear and integer programming, Wiley/Interscience, 1986.Google Scholar
  10. [10]
    Stiemke, E.: ‘Über positive Lösungen homogener linearer Gleichungen’, Math. Ann. 76 (1915), 340–342.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Tucker, A.W.: ‘Dual systems of homogeneous linear relations’, in H.W. Kuhn and A.W. Tucker (eds.): Linear Inequalities and Related Systems, Vol. 38 of Ann. of Math. Stud., Princeton Univ. Press, 1956, pp. 3–18.Google Scholar

References

  1. [1]
    Boie, V.: ‘Multiplication of distributions’, Comment. Math. Univ. Carolinae 39 (1998), 309–321.MATHMathSciNetGoogle Scholar
  2. [2]
    Bony, J.M.: ‘Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires’, Ann. Sci. École Norm. Sup. Sér. 4 14 (1981), 209–246.MATHMathSciNetGoogle Scholar
  3. [3]
    Dierolf, P., and Voigt, J.: ‘Convolution and S′-convolution of distributions’, Collect. Math. 29 (1978), 185–196.MathSciNetGoogle Scholar
  4. [4]
    Hörmander, L.: ‘Fourier integral operators I’, Ada Math. 127 (1971), 79–183.MATHGoogle Scholar
  5. [5]
    Oberguggenberger, M.: Multiplication of distributions and applications to partial differential equations, Longman, 1992.Google Scholar
  6. [6]
    Schwartz, L.: ‘Sur l’impossibilité de la multiplication des distributions’, C.R. Acad. Sci. Paris 239 (1954), 847–848.MATHMathSciNetGoogle Scholar
  7. [7]
    Schwartz, L.: Théorie des distributions, nouvelle ed., Hermann, 1966.Google Scholar
  8. [8]
    Triebel, H.: Theory of function spaces, Birkhäuser, 1983.Google Scholar

References

  1. [1]
    Akemann, Ch.A., and Pedersen, G.K.: ‘Ideal perturbations of elements in C*-algebras’, Math. Scand. 41 (1977), 117–139.MATHMathSciNetGoogle Scholar
  2. [2]
    Akemann, Ch.A., Pedersen, G.K., and Tomiyama, J.: ‘Multipliers of C*-algebras’, J. Fund. Anal. 13 (1973), 277–301.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Blackadar, B.: ‘Shape theory for C*-algebras’, Math. Scand. 56 (1985), 249–275.MATHMathSciNetGoogle Scholar
  4. [4]
    Busby, R.C.: ‘Double centralizers and extensions of C*-algebras’, Trans. Amer. Math. Soc. 132 (1968), 79–99.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Eilers, S., Loring, T.A., and Pedersen, G.K.: ‘Morphisms of extensions of C*-algebras: Pushing forward the Busby invariant’, Adv. Math. 147 (1999), 74–109.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Grove, K., and Pedersen, G.K.: ‘Diagonalizing matrices over C(X)’, J. Fund. Anal. 59 (1984), 65–89.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Grove, K., and Pedersen, G.K.: ‘Sub-Stonean spaces and corona sets’, J. Fund. Anal. 56 (1984), 124–143.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Johnson, B.E.: ‘An introduction to the theory of centralizers’, Proc. London Math. Soc. 14 (1964), 299–320.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Loring, T.A.: Lifting solutions to perturbing problems in C*-algebras, Vol. 8 of Fields Inst. Monographs, Amer. Math. Soc, 1997.Google Scholar
  10. [10]
    Loring, T.A., and Pedersen, G.K.: ‘Projectivity, transitivity and AF telescopes’, Trans. Amer. Math. Soc. 350 (1998), 4313–4339.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Olsen, C.L., and Pedersen, G.K.: ‘Corona C*-algebras and their applications to lifting problems’, Math. Scand. 64 (1989), 63–86.MATHMathSciNetGoogle Scholar
  12. [12]
    Pedersen, G.K.: C*-algebras and their automorphism groups, Acad. Press, 1979.Google Scholar
  13. [13]
    Pedersen, G.K.: ‘SAW*-algebras and corona C*-algebras, contributions to non-commutative topology’, J. Oper. Th. 4 (1986), 15–32.Google Scholar
  14. [14]
    Pedersen, G.K.: ‘The corona construction’, in J.B. Conway and B.B. Morrel (eds.): Proc. 1988 GPOTS-Wabash Conf., Longman Sci., 1990, pp. 49–92.Google Scholar
  15. [15]
    Pedersen, G.K.: ‘Extensions of C*-algebras’, in S. Doplicher et al. (eds.): Operator Algebras and Quantum Field Theory, Internat. Press, Cambridge, Mass., 1997, pp. 2–35.Google Scholar
  16. [16]
    Taylor, D.C.: ‘The strict topology for double centralizer algebras’, Trans. Amer. Math. Soc. 150 (1970), 633–643.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Personalised recommendations