Advertisement

Keywords

Moment Problem Magnetic Monopole Vertex Operator Algebra Inductive Logic Programming Closed Convex Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chauvin, Y., and Rumelhart, D.E. (eds.): Backpropagation: Theory, architectures and applications, Lawrence Erlbaum, 1993.Google Scholar
  2. [2]
    Ellman, T.: ‘Explanation-based learning: A survey of programs and perspectives’, ACM Computing Surveys 21,no. 2 (1989), 163–221.CrossRefGoogle Scholar
  3. [3]
    Kearns, M., and Vazirani, U.: An introduction to computational learning theory, MIT, 1994.Google Scholar
  4. [4]
    Li, M., and Vitanyi, P.: An introduction to Kolmogorov complexity and its applications, Springer, 1993.Google Scholar
  5. [5]
    Mitchell, T.: Machine learning, McGraw-Hill, 1997.Google Scholar
  6. [6]
    Muggleton, S.: Foundations of inductive logic programming, Prentice-Hall, 1995.Google Scholar
  7. [7]
    Quinlan, J.R.: C4.5: Programs for machine learning, Kaufmann, 1993.Google Scholar
  8. [8]
    Russell, S.J.: The use of knowledge in analogy and induction, Pitman, 1989.Google Scholar
  9. [9]
    Shrager, J., and Langley, P.: Computational models of scientific discovery and theory formation, Kaufmann, 1990.Google Scholar
  10. [10]
    Sutton, R.S., and Barto, A.G.: Reinforcement learning. An introduction, MIT, 1998.Google Scholar
  11. [11]
    Weiss, S., and Kulikowski, C.: Computer systems that learn. Classification and prediction methods from statistics, neural nets, machine learning and expert systems, Kaufmann, 1991.Google Scholar

References

  1. [1]
    Atiyah, M.F.: ‘Magnetic monopoles in hyperbolic space’: Vector bundles on algebraic varieties, Oxford Univ. Press, 1987, pp. 1–34.Google Scholar
  2. [2]
    Atiyah, M.F., and Hitchin, N.J.: The geometry and dynamics of magnetic monopoles, Princeton Univ. Press, 1988.Google Scholar
  3. [3]
    Donaldson, S.K.: ‘Nahm’s equations and the classification of monopoles’, Commun. Math. Phys. 96 (1984), 397–407.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Hitchin, N.J.: ‘Monopoles and geodesies’, Commun. Math. Phys. 83 (1982), 579–602.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Hitchin, N.J.: ‘On the construction of monopoles’, Commun. Math. Phys. 89 (1983), 145–190.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Hitchin, N.J.: ‘Integrable systems in Riemannian geometry’, in C.-L. Terng and K. Uhlenbeck (eds.): Surveys in Differential Geometry, Vol. 4, Internat. Press, Cambridge, Mass., 1999, pp. 21–80.Google Scholar
  7. [7]
    Hitchin, N.J., Manton, N.S., and Murray, M.K.: ‘Symmetric monopoles’, Nonlinearity 8 (1995), 661–692.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Hitchin, N.J., and Murray, M.K.: ‘Spectral curves and the ADHM method’, Commun. Math. Phys. 114 (1988), 463–474.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Hurtubise, J., and Murray, M.K.: ‘On the construction of monopoles for the classical groups’, Commun. Math. Phys. 122 (1989), 35–89.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Jaffe, A., and Taubes, C.H.: Vortices and monopoles, Vol. 2 of Progress in Physics, Birkhäuser, 1980.Google Scholar
  11. [11]
    Murray, M.K.: ‘Monopoles and spectral curves for arbitrary Lie groups’, Commun. Math. Phys. 90 (1983), 263–271.zbMATHCrossRefGoogle Scholar
  12. [12]
    Murray, M.K.: ‘On the complete integrability of the discrete Nahm equations’, Commun. Math. Phys. 210 (2000), 497–519.zbMATHCrossRefGoogle Scholar
  13. [13]
    Nahm, W.: ‘The construction of all self-dual monopoles by the ADHM method’, in N.S. Craigie, P. Goddard, and W. Nahm (eds.): Monopoles in Quantum Field Theory, World Sci., 1982.Google Scholar
  14. [14]
    Segal, G.B., and Selby, A.: ‘The cohomology of the space of magnetic monopoles’, Commun. Math. Phys. 177 (1996), 775–787.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Sutclifpe, P.M.: ‘BPS monopoles’, Internat. J. Modern Phys. A 12 (1997), 4663–4705.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Taubes, C.H.: ‘Stability in Yang-Mills theories’, Commun. Math. Phys. 91 (1983), 235–263.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Mahler, K.: ‘Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichung’, Math. Ann. 101 (1929), 342–366, Corrigendum: 103 (1930), 532.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Mahler, K.: ‘Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen’, Math. Z. 32 (1930), 545–585.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Mahler, K.: ‘Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen’, Math. Ann. 103 (1930), 573–587.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Mahler, K.: ‘Remarks on a paper by W. Schwarz’, J. Number Theory 1 (1969), 512–521.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Nishioka, K.: Mahler functions and transcendence, Vol. 1631 of Lecture Notes in Mathematics, Springer, 1996.Google Scholar

References

  1. [1]
    Birman, J.S.: Braids, links and mapping class groups, Ann. of Math. Stud. Princeton Univ. Press, 1974.Google Scholar
  2. [2]
    Markov, A.A.: ‘Über die freie Aquivalenz der geschlossen Zopfe’, Recueil Math. Moscou 1 (1935), 73–78.Google Scholar
  3. [3]
    Weinberg, N.M.: ‘On free equivalence of free braids’, C.R. (Dokl.) Acad. Sci. USSR 23 (1939), 215–216. (In Russian.)Google Scholar

References

  1. [1]
    Brownawell, W.D.: ‘Local diophantine Nullstellen equalities’, J. Amer. Math. Soc. 1 (1988), 311–322.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Kollár, J.: ‘Sharp effective Nullstellensatz’, J. Amer. Math. Soc. 1 (1988), 963–975.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Mayr, E.W., and Meyer, A.R.: ‘The complexity of the word problems in commutative semigroups and polynlomial ideals’, Adv. Math. 46 (1982), 305–329.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Albeverio, S.: ‘Mathematical physics and stochastic analysis’, Bell. Sci. Math. 117 (1993), 125.zbMATHGoogle Scholar
  2. [2]
    Albeverio, S., Gottschalk, H., and Wu, J.-L.: ‘Scattering behaviour of quantum vector fields obtained from Euclidean covariant SPDEs’, Kept. Math. Phys. 44,no. 1 (1999), 21.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Buchholz, D., and Vrech, R.: ‘Scaling algebras and renormalization group in algebraic quantum field theory’, Rev. Math. Phys. 7 (1995).Google Scholar
  4. [4]
    Glimm, J., and Jaffe, A.: Quantum physics: A functional integral point of view, second ed., Springer, 1987.Google Scholar
  5. [5]
    Haac, R.: ‘Quantum field theories with composite particles and asymptotic condition’, Phys. Rev. 112 (1958), 669.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Hepp, K.: ‘On the connection between LSZ and Wightman quantum field theory’, Commun. Math. Phys. 1 (1965), 95.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Jost, R.: The general theory of quantized fields, Amer. Math. Soc, 1965.Google Scholar
  8. [8]
    Kuksin, S.B.: ‘On the long-time behaviour of solutions of nonlinear wave equations’, in D. Iagolnitzer (ed.): XIth Int. Cong. Math. Phys., Cambridge Internat. Press, 1995, pp. 273–277.Google Scholar
  9. [9]
    Lehmann, H., Symanzik, K., and Zimmermann, W.: ‘Zur Formulierung quantisierter Feldtheorien’, Il Nuovo Cimento 1 (1954), 205.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Rühl, W.: The Lorentz group and harmonic analysis, Benjamin, 1970.Google Scholar
  11. [11]
    Ruelle, D.: ‘On the asymptotic condition in quantum field theory’, Helv. Phys. Ada 35 (1962), 147.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Simon, B.: The P(ϕ) 2 Euclidean (quantum) field theory, Princeton Univ. Press, 1975.Google Scholar
  13. [13]
    Strauss, W.: Nonlinear wave equations, Amer. Math. Soc, 1989.Google Scholar
  14. [14]
    Streater, R.: ‘Uniqueness of the Haag-Ruelle scattering states’, J. Math. Phys. 8 (1967), 1685–1693.zbMATHCrossRefGoogle Scholar
  15. [15]
    Streater, R.F., and Wightman, A.S.: PCT spin & statistics and all that…, Benjamin, 1964.Google Scholar
  16. [16]
    Wigner, E.P.: ‘On unitary representations of the inhomoge-nous Lorentz group’, Ann. Math. 40 (1939), 149.MathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Albeverio, S., Gottschalk, H., and Wu, J.-L.: ‘Models of local, relativistic quantum fields with indefinite metric (in all dimensions)’, Commun. Math. Phys. 184 (1997), 509.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Albeverio, S., Gottschalk, H., and Wu, J.-L.: ‘Nontrivial scattering amplitudes for some local, relativistic quantum field models with indefinite metric’, Phys. Lett. B 405 (1997), 243.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Buchholz, D.: ‘Collision theory for massless Fermions’, Commun. Math. Phys. 42 (1975), 269.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Buchholz, D.: ‘Collision theory for massless Bosons’, Commun. Math. Phys. 52 (1977), 147.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Buchholz, D.: ‘The physical state space of quantum electro-dynamics’, Commun. Math. Phys. 85 (1982), 49.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Buchholz, D.: ‘On the manifestation of particles’, in A.N. Sen and A. Gersten (eds.): Proc. Beer Sheva Conf. (1993): Math. Phys. Towards the 21st Century, Ben Gurion of the Negev Press, 1994.Google Scholar
  7. [7]
    Buchholz, D., Doplicher, S., Longo, R., and Roberts, J.E.: ‘A new look at Goldstone’s theorem’, Rev. Math. Phys., Special Issue 49 (1992).Google Scholar
  8. [8]
    Morchio, G., and Strocchi, F.: ‘Infrared singularities, vacuum structure and pure phases in local quantum field theory’, Ann. Inst. H. Poincaré B33 (1980), 251.MathSciNetGoogle Scholar
  9. [9]
    Schroer, B.: ‘Infrateilchen in der Quantenfeldtheorie’, Fortschr. Phys. 173 (1963), 1527.MathSciNetGoogle Scholar
  10. [10]
    Streater, R.F., and Wightman, A.S.: PCT spin & statistics and all that…, Benjamin, 1964.Google Scholar
  11. [11]
    Strocchi, F.: ‘Local and covariant gauge quantum field theories, cluster property, superselection rules and the infrared problem’, Phys. Rev. D17 (1978), 2010.MathSciNetGoogle Scholar
  12. [12]
    Strocchi, F., and Wightman, A.S.: ‘Proof of the charge superselection rule in local, relativistic quantum field theory’, J. Math. Phys. 15 (1974), 2198.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Weinberg, S.: The quantum theory of fields, Vol. I–II, Cambridge Univ. Press, 1995.Google Scholar
  14. [14]
    Wigner, E.P.: ‘On unitary representations of the inhomogenous Lorentz group’, Ann. Math. 40 (1939), 149.MathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Fulling, S.A.: Aspects of quantum field theory in curved space-time, Cambridge Univ. Press, 1989.Google Scholar
  2. [2]
    Gordon, O.: ‘Der Comptoneffekt nach der Schrödingerschen Theorie’, Z. f. Phys. 40 (1926), 117.CrossRefGoogle Scholar
  3. [3]
    Gross, L.: ‘Norm invariance of mass zero equations under the conformal group’, J. Math. Phys. 5 (1964), 687–695.zbMATHCrossRefGoogle Scholar
  4. [4]
    Jager, E.M. de: ‘The Lorentz-invariant solutions of the Klein-Gordon equation I-II’, Indag. Math. 25 (1963), 515–531; 546–558.Google Scholar
  5. [5]
    Jost, R.: The general theory of quantised fields, Amer. Math. Soc, 1965.Google Scholar
  6. [6]
    Klein, O.: ‘Quantentheorie und fünfdimensionale Relativitätstheorie’, Z. f. Phys. 37 (1926), 895.CrossRefGoogle Scholar
  7. [7]
    Schrödinger, E.: ‘Quantisierung als Eigenwertproblem II’, Ann. Phys. 81 (1926), 109.CrossRefGoogle Scholar
  8. [8]
    Weinberg, S.: The quantum theory of fields, Vol. I, Cambridge Univ. Press, 1995.Google Scholar

References

  1. [1]
    Farrell, E.J.: ‘Introduction to matching polynomials’, J. Combin. Th. B 27 (1979), 75–86.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Farrell, E.J.: ‘On a general class of graph polynomials’, J. Combin. Th. B 26 (1979), 111–122.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Farrell, E.J.: ‘The matching polynomial and its relation to the acyclic polynomial of a graph’, Ars Combinatoria 9 (1980), 221–228.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Farrell, E.J.: ‘A graph-theoretic approach to Rook theory’, Caribb. J. Math. 7 (1988), 1–47.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Farrell, E.J.: ‘The matching polynomial and its relation to the Rook polynomial’, J. Franklin Inst. 325,no. 4 (1988), 527–536.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Farrell, E.J., and Guo, J.M.: ‘On the characterizing properties of the matching polynomial’, Vishwa Internat. J. Graph Th. 2,no. 1 (1993), 55–62.Google Scholar
  7. [7]
    Farrell, E.J., Guo, J.M., and Constantine, G.M.: ‘On the matching coefficients’, Discr. Math. 89 (1991), 203–210.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Farrell, E.J., and Wahid, S.A.: ‘Some analytical properties of the matching polynomial of a graph’: Proc. Fifth Caribb. Conf. in Comb, and Graph Th., Jan.5–8, 1988, pp. 105–119.Google Scholar
  9. [9]
    Farrell, E.J., and Wahid, S.A.: ‘Matching polynomials: A matrix approach and its applications’, J. Franklin Inst. 322 (1986), 13–21.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Farrell, E.J., and Wahid, S.A.: ‘Some general classes of comatching graphs’, Internat. J. Math. Math. Sci. 10,no. 3 (1987), 519–524.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Farrell, E.J., and Wahid, S.A.: ‘D-graphs I: An introduction to graphs whose matching polynomials are determinants of matrices’, Bull. ICA 15 (1995), 81–86.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Farrell, E.J., and Wahid, S.A.: ‘D-graphs II: Constructions of D-graphs for some families of graphs with even cycles’, Utilitas Math. 56 (1999), 167–176.zbMATHMathSciNetGoogle Scholar
  13. [13]
    Farrell, E.J., and Whitehead, E.G.: ‘Connections between the matching and chromatic polynomials’, Internat. J. Math. Math. Sci. 15,no. 4 (1992), 757–766.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Godsil, C.D., and Gutman, I.: ‘On the theory of the matching polynomial’, J. Graph Th. 5 (1981), 137–145.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Gutman, I.: ‘The acyclic polynomial of a graph’, Publ. Inst. Math. Beograd 22(36) (1977), 63–69.MathSciNetGoogle Scholar
  16. [16]
    Gutman, I.: ‘The matching polynomial’, MATCH, no. 6 (1979), 75–91.zbMATHGoogle Scholar

References

  1. [1]
    Chandrasekhariah, D.S., and Debnath, L.: Continuum mechanics, Acad. Press, 1994.Google Scholar
  2. [2]
    Fung, Y.C.: Foundations of solid mechanics, Prentice-Hall, 1965.Google Scholar

References

  1. [1]
    Bapat, R.B., Grossman, J.W., and Kulkarni, D.M.: ‘Generalized matrix tree theorem for mixed graphs’, Linear and Multilinear Algebra 46 (1999), 299–312.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Bapat, R.B., Grossman, J.W., and Kulkarni, D.M.: ‘Edge version of the matrix tree theorem for trees’, Linear and Multilinear Algebra 47 (2000), 217–229.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Biggs, N.: Algebraic graph theory, second ed., Cambridge Univ. Press, 1993.Google Scholar
  4. [4]
    Cayley, A.: ‘A theorem on trees’, Quart. J. Math. 23 (1889), 376–378.Google Scholar
  5. [5]
    Chaiken, S.: ‘A combinatorial proof of the all minors matrix tree theorem’, SIAM J. Algebraic Discr. Math. 3,no. 3 (1982), 319–329.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Chebotarev, P.Yu., and Shamis, E.V.: ‘The matrix-forest theorem and measuring relations in small social groups’, Automat. Remote Control 58,no. 9:2 (1997), 1505–1514.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Constantine, G.M.: Combinatorial theory and statistical design, Wiley, 1987.Google Scholar
  8. [8]
    Goulden, I.P., and Jackson, D.M.: Combinatorial enumeration, Wiley, 1983.Google Scholar
  9. [9]
    Kirchhofp, G.: ‘Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird’, Ann. Phys. Chera. 72 (1847), 497–508.CrossRefGoogle Scholar
  10. [10]
    Mayeda, W.: Graph theory, Wiley, 1972.Google Scholar
  11. [11]
    Merris, R.: ‘An edge version of the matrix-tree theorem and the Wiener index’, Linear and Multilinear Algebra 25 (1989), 291–296.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Merris, R.: ‘Laplacian matrices of graphs: a survey’, Linear Alg. & Its Appl. 197/198 (1994), 143–176.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Moon, J.W.: ‘Various proofs of Cayley’s formula for counting trees’, in F. Harary (ed.): A Seminar on Graph Theory, Holt, Rinehart & Winston, 1967, pp. 70–78.Google Scholar
  14. [14]
    Moon, J.W.: Counting labeled trees, Vol. 1 of Canad. Math. Monographs, Canad. Math. Congress, 1970.Google Scholar
  15. [15]
    Seneta, E.: Non-negative matrices and Markov chains, second ed., Springer, 1981.Google Scholar
  16. [16]
    Tutte, W.T.: ‘The disection of equilateral triangles into equilateral triangles’, Proc. Cambridge Philos. Soc. 44 (1948), 463–482.zbMATHMathSciNetGoogle Scholar
  17. [17]
    West, D.B.: Introduction to graph theory, Prentice-Hall, 1996.Google Scholar

References

  1. [1]
    Ahern, P., Flores, M., and Rudin, W.: ‘An invariant volume-mean-value property’, J. Fund. Anal. 11 (1993), 380–397.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Aizenberg, L.A.: ‘Pluriharmonic functions’, Dokl. Akad. Nauk. SSSR 124 (1959), 967–969. (In Russian.)MathSciNetGoogle Scholar
  3. [3]
    Aizenberg, L.A., Berenstein, C.A., and Wertheim, L.: ‘Mean-value characterization of pluriharmonic and separately harmonic functions’, Pacific J. Math. 175 (1996), 295–306.MathSciNetGoogle Scholar
  4. [4]
    Aizenberg, L., and Liflyand, E.: ‘Mean-value characterization of holomorphic and pluriharmonic functions’, Complex Variables 32 (1997), 131–146.MathSciNetGoogle Scholar
  5. [5]
    Aizenberg, L., and Liflyand, E.: ‘Mean-value characterization of holomorphic and pluriharmonic functions, II’, Complex Variables 39 (1999), 381–390.MathSciNetGoogle Scholar
  6. [6]
    Ben Natan, Y., and Weit, Y.: ‘Integrable harmonic functions on Rn’, J. Fund. Anal. 150 (1997), 471–477.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Ben Natan, Y., and Weit, Y.: ‘Integrable harmonic functions and symmetric spaces of rank one’, J. Fund. Anal. 160 (1998), 141–149.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Benyamini, Y., and Weit, Y.: ‘Functions satisfying the mean value property in the limit’, J. Anal. Math. 52 (1989), 167–198.zbMATHMathSciNetGoogle Scholar
  9. [9]
    Berenstein, C.A., and Gay, R.: ‘A local version of the two-circles theorem’, Israel J. Math. 55 (1986), 267–288.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Berenstein, C.A., and Zalcman, L.: ‘Pompeiu’s problem on symmetric spaces’, Comment. Math. Helv. 55 (1980), 593–621.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Delsarte, J.: Lectures on topics in mean periodic functions and the two-radius theorem, Tata Institute, Bombay, 1961.Google Scholar
  12. [12]
    Hansen, W.: ‘Restricted mean value property and harmonic functions’, in J. Kral et al. (eds.): Potential Theory-ICPT 94 (Proc. Intern. Conf., Konty), de Gruyter, 1996, pp. 67–90.Google Scholar
  13. [13]
    Hansen, W., and Nadirashvili, N.: ‘A converse to the mean value theorem for harmonic functions’, Ada Math. 171 (1993), 139–163.zbMATHMathSciNetGoogle Scholar
  14. [14]
    Hansen, W., and Nadirashvili, N.: ‘Littlewood’s one circle problem’, J. London Math. Soc. 50 (1994), 349–360.zbMATHMathSciNetGoogle Scholar
  15. [15]
    Netuka, I., and Vesely, J.: ‘Mean value property and harmonic functions’, in K. Gowrisankaran et al. (eds.): Classical and Modern Potential Theory and Applications, Kluwer Acad. Publ., 1994, pp. 359–398.Google Scholar
  16. [16]
    Opial, Z., and Siciak, J.: ‘Integral formulas for function holomorphic in convex n circular domains’, Zeszyty Nauk. Uniw. Jagiello. Prace Mat. 9 (1963), 67–75.MathSciNetGoogle Scholar
  17. [17]
    Rudin, W.: Function theory in the unit ball of C n, Springer, 1980.Google Scholar
  18. [18]
    Temlyakov, A.A.: ‘Integral representation of functions of two complex variables’, Izv. Akad. Nauk. SSSR Ser. Mat. 21 (1957), 89–92. (In Russian.)MathSciNetGoogle Scholar
  19. [19]
    Volchkov, V.V.: ‘New theorems on the mean for solutions of the Helmholtz equation’, Russian Acad. Sci. Sb. Math. 79 (1994), 281–286.MathSciNetCrossRefGoogle Scholar
  20. [20]
    Volchkov, V.V.: ‘New two-radii theorems in the theory of harmonic functions’, Russian Acad. Sci. Izv. Math. 44 (1995), 181–192.MathSciNetCrossRefGoogle Scholar
  21. [21]
    Volchkov, V.V.: ‘The final version of the mean value theorem for harmonic functions’, Math. Notes 59 (1996), 247–252.zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Zalcman, L.: ‘Mean values and differential equations’, Israel J. Math. 14 (1973), 339–352.zbMATHMathSciNetGoogle Scholar
  23. [23]
    Zalcman, L.: ‘Offbeat integral geometry’, Amer. Math. Monthly 87 (1980), 161–175.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Kronheimer, P.B., and Mrowka, T.S.: ‘Gauge theory for embedded surfaces I’, Topology 32,no. 4 (1993), 773–826.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Barnabei, M., Brini, A., and Rota, G.-C: ‘Theory of Möbius functions’, Russian Math. Surveys 3 (1986), 135–188.CrossRefGoogle Scholar
  2. [2]
    Björner, A.: ‘Homology and shellability of matroids and geometric lattices’, in N.L. WHITE (ed.): Matroid Applications, Cambridge Univ. Press, 1992, pp. 226–283.Google Scholar
  3. [3]
    Kung, J.P.S.: ‘Radon transforms in combinatorics and lattice theory’, in I. Rival (ed.): Combinatorics and Ordered Sets, Amer. Math. Soc, 1986, pp. 33–74.Google Scholar
  4. [4]
    Rota, G.-C.: ‘On the foundations of combinatorial theory I: Theory of MÖbius functions’, Z. Wahrsch. Verw. Gebiete 2 (1964), 340–368.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Akhiezer, N.L.: The classical moment problem, Oliver & Boyd, 1969. (Translated from the Russian.)Google Scholar
  2. [2]
    Shohat, J.A., and Tamarkin, J.D.: The problem of moments, Vol. 1 of Math. Surveys, Amer. Math. Soc, 1943. (Translated from the Russian.)Google Scholar

References

  1. [1]
    Alekseev, A., Malkin, A., and Meinrenken, E.: ‘Lie group valued moment maps’, J. Diff. Geom. 48 (1998), 445–495.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Kirillov, A.A.: Elements of the theory of representations, Springer, 1976.Google Scholar
  3. [3]
    Kostant, B.: ‘Orbits, symplectic structures, and representation theory’: Proc. United States-Japan Sem. Diff. Geom., Nippon Hyoronsha, 1966, p. 71.Google Scholar
  4. [4]
    Libermann, P., and Marle, C.M.: Symplectic geometry and analytic mechanics, Reidel, 1987.Google Scholar
  5. [5]
    Lie, S.: Theorie der Transformationsgruppen, Zweiter Abschnitt, Teubner, 1890.Google Scholar
  6. [6]
    Marmo, G., Saletan, E., Simoni, A., and Vitale, B.: Dynamical systems. A differential geometric approach to symmetry and reduction, Wiley/Interscience, 1985.Google Scholar
  7. [7]
    Marsden, J., and Ratiu, T.: Introduction to mechanics and symmetry, second ed., Springer, 1999.Google Scholar
  8. [8]
    Neeb, K.-H.: Holomorphy and convexity in Lie theory, de Gruyter, 1999.Google Scholar
  9. [9]
    Souriau, J.M.: ‘Quantification géométrique’, Commun. Math. Phys. 1 (1966), 374–398.MathSciNetzbMATHGoogle Scholar

References

  1. [1]
    Chen, Q.: ‘The 3-move conjecture for 5-braids’: Knots in Hellas’ 98 (Proc. Internat. Conf. Knot Theory and Its Ramifications, Vol. 24 of Knots and Everything, 2000, pp. 36–47.Google Scholar
  2. [2]
    Kirby, R.: ‘Problems in low-dimensional topology’, in W. Kazez (ed.): Geometric Topology (Proc. Georgia Internat. Topol. Conf. 1993), Vol. 2:2 of Stud. Adv. Math., Amer. Math. Soc./IP, 1997, pp. 35–473.Google Scholar
  3. [3]
    Morton, H.R.: ‘Problems’, in J.S. Birman and A. Lib-gober (eds.): Braids (Santa Cruz, 1986), Vol. 78 of Con-temp. Math., Amer. Math. Soc, 1988, pp. 557–574.Google Scholar
  4. [4]
    Przytycki, J.H., and Tsukamoto, T.: ‘The fourth skein module and the Montesinos-Nakanishi conjecture for 3-algebraic links’, J. Knot Th. Ramifications to appear (2001).Google Scholar

References

  1. [1]
    Alexander, D., Cummins, C., Mckay, J., and Simons, C.: ‘Completely replicable functions’: Groups, Combinatorics and Geometry, Cambridge Univ. Press, 1992, pp. 87–98.Google Scholar
  2. [2]
    Borcherds, R.E.: ‘Vertex algebras, Kac-Moody algebras, and the Monster’, Proc. Nat. Acad. Sci. USA 83 (1986), 3068–3071.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Borcherds, R.E.: ‘Generalized Kac-Moody algebras’, J. Algebra 115 (1988), 501–512.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Borcherds, R.E.: ‘Monstrous moonshine and monstrous Lie superalgebras’, Invent. Math. 109 (1992), 405–444.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Borcherds, R.E.: ‘Modular moonshine III’, Duke Math. J. 93 (1998), 129–154.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Borcherds, R.E.: ‘What is Moonshine?’: Proc. ICM, Berlin, DMV, 1998, pp. 607–615.Google Scholar
  7. [7]
    Conway, J.H., and Norton, S.P.: ‘Monstrous moonshine’, Bull. London Math. Soc. 11 (1979), 308–339.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Cummins, C., and Gannon, T.: ‘Modular equations and the genus 0 property of Moonshine functions’, Invent. Math. 129 (1997), 413–443.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Dixon, L., Ginsparg, P., and Harvey, J.: ‘Beauty and the Beast: superconformal symmetry in a Monster module’, Commun. Math. Phys. 119 (1988), 221–241.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Dong, C., Li, H., and Mason, G.: ‘Modular invariance of trace functions in orbifold theory’, preprint q-alg/9703016 (1997).Google Scholar
  11. [11]
    Frenkel, I.B., Lepowsky, J., and Meurman, A.: Vertex operators and the monster, Acad. Press, 1988.Google Scholar
  12. [12]
    Griess, R.L.: ‘The friendly giant’, Invent. Math. 69 (1982), 1–102.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Hirzebruch, F., Berger, T., and Jung, R.: Manifolds and modular forms, second ed., Aspects of Math. Vieweg, 1994.Google Scholar
  14. [14]
    Norton, S.P.: ‘Generalized moonshine’, Proc. Symp. Pure Math. 47 (1987), 208–209.MathSciNetGoogle Scholar
  15. [15]
    Queen, L.: ‘Modular functions arising from some finite groups’, Math. Comput. 37 (1981), 547–580.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Ryba, A.J.E.: ‘Modular moonshine?’: Moonshine, the Monster, and Related Topics, Vol. 193 of Contemp. Math., Amer. Math. Soc, 1996, pp. 307–336.Google Scholar
  17. [17]
    Smith, G.W.: ‘Replicant powers for higher genera’: Moonshine, the Monster, and Related Topics, Vol. 193 of Contemp. Math., Amer. Math. Soc, 1996, pp. 337–352.Google Scholar
  18. [18]
    Tuite, M.P.: ‘On the relationship between Monstrous moonshine and the uniqueness of the Moonshine module’, Commun. Math. Phys. 166 (1995), 495–532.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Zhu, Y.: ‘Modular invariance of characters of vertex operator algebras’, J. Amer. Math. Soc. 9 (1996), 237–302.zbMATHMathSciNetCrossRefGoogle Scholar

References

  1. [1]
    Kawamata, Y.: ‘The cone of curves of algebraic varieties’, Ann. of Math. 119 (1984), 603–633.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Kawamata, Y.: ‘Termination of log-flips for algebraic 3-folds’, Internat. J. Math. 3 (1992), 653–659.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Kawamata, Y., Matsuda, K., and Matsuki, K.: ‘Introduction to the minimal model problem’, Adv. Stud. Pure Math. 10 (1987), 283–360.MathSciNetGoogle Scholar
  4. [4]
    Mori, S.: ‘Threefolds whose canonical bundles are not numerically effective’, Ann. of Math. 116 (1982), 133–176.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Mori, S.: ‘Flip theorem and the existence of minimal models for 3-folds’, J. Amer. Math. Soc. 1 (1988), 117–253.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Shokurov, V.: ‘The nonvanishing theorem’, Izv. Akad. Nauk. SSSR 49 (1985), 635–651.MathSciNetGoogle Scholar
  7. [7]
    Shokurov, V.: ‘3-fold log flips’, Izv. Russian Akad. Nauk. 56 (1992), 105–203.Google Scholar

References

  1. [1]
    Fan, K.: ‘Systems of linear inequalities’, in H.W. Kuhn and A.W. Tucker (eds.): Linear Inequalities and Related Systems, Vol. 38 of Ann. of Math. Stud., Princeton Univ. Press, 1956, pp. 99–156.Google Scholar
  2. [2]
    Farkas, J.: ‘Über die Theorie der einfachen Ungleichungen’, J. Reine Angew. Math. 124 (1902), 1–24.Google Scholar
  3. [3]
    Gordan, P.: ‘Über die Auflösungen linearer Gleighungen mit reelen Coefficienten’, Math. Ann. 6 (1873), 23–28.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Ktjhn, H.W., and Tucker, A.W. (eds.): Linear inequalities and related systems, Vol. 38 of Ann. of Math. Stud., Princeton Univ. Press, 1956.Google Scholar
  5. [5]
    Mangasarian, O.L.: Nonlinear programming, McGraw-Hill, 1969.Google Scholar
  6. [6]
    Motzkin, T.S.: ‘Beiträge zur Theorie der linearen Ungleichungen’, Inaugural Diss. (Basel, Jerusalem) (1936).Google Scholar
  7. [7]
    Motzkin, T.S.: ‘Two consequences of the transposition theorem on linear inequalities’, Econometrica 19 (1951), 184–185.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Rockafellar, R.T.: Convex analysis, Princeton Univ. Press, 1970.Google Scholar
  9. [9]
    Schrijver, A.: Theory of linear and integer programming, Wiley/Interscience, 1986.Google Scholar
  10. [10]
    Stiemke, E.: ‘Über positive Lösungen homogener linearer Gleichungen’, Math. Ann. 76 (1915), 340–342.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Tucker, A.W.: ‘Dual systems of homogeneous linear relations’, in H.W. Kuhn and A.W. Tucker (eds.): Linear Inequalities and Related Systems, Vol. 38 of Ann. of Math. Stud., Princeton Univ. Press, 1956, pp. 3–18.Google Scholar

References

  1. [1]
    Boie, V.: ‘Multiplication of distributions’, Comment. Math. Univ. Carolinae 39 (1998), 309–321.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Bony, J.M.: ‘Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires’, Ann. Sci. École Norm. Sup. Sér. 4 14 (1981), 209–246.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Dierolf, P., and Voigt, J.: ‘Convolution and S′-convolution of distributions’, Collect. Math. 29 (1978), 185–196.MathSciNetGoogle Scholar
  4. [4]
    Hörmander, L.: ‘Fourier integral operators I’, Ada Math. 127 (1971), 79–183.zbMATHGoogle Scholar
  5. [5]
    Oberguggenberger, M.: Multiplication of distributions and applications to partial differential equations, Longman, 1992.Google Scholar
  6. [6]
    Schwartz, L.: ‘Sur l’impossibilité de la multiplication des distributions’, C.R. Acad. Sci. Paris 239 (1954), 847–848.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Schwartz, L.: Théorie des distributions, nouvelle ed., Hermann, 1966.Google Scholar
  8. [8]
    Triebel, H.: Theory of function spaces, Birkhäuser, 1983.Google Scholar

References

  1. [1]
    Akemann, Ch.A., and Pedersen, G.K.: ‘Ideal perturbations of elements in C*-algebras’, Math. Scand. 41 (1977), 117–139.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Akemann, Ch.A., Pedersen, G.K., and Tomiyama, J.: ‘Multipliers of C*-algebras’, J. Fund. Anal. 13 (1973), 277–301.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Blackadar, B.: ‘Shape theory for C*-algebras’, Math. Scand. 56 (1985), 249–275.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Busby, R.C.: ‘Double centralizers and extensions of C*-algebras’, Trans. Amer. Math. Soc. 132 (1968), 79–99.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Eilers, S., Loring, T.A., and Pedersen, G.K.: ‘Morphisms of extensions of C*-algebras: Pushing forward the Busby invariant’, Adv. Math. 147 (1999), 74–109.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Grove, K., and Pedersen, G.K.: ‘Diagonalizing matrices over C(X)’, J. Fund. Anal. 59 (1984), 65–89.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Grove, K., and Pedersen, G.K.: ‘Sub-Stonean spaces and corona sets’, J. Fund. Anal. 56 (1984), 124–143.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Johnson, B.E.: ‘An introduction to the theory of centralizers’, Proc. London Math. Soc. 14 (1964), 299–320.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Loring, T.A.: Lifting solutions to perturbing problems in C*-algebras, Vol. 8 of Fields Inst. Monographs, Amer. Math. Soc, 1997.Google Scholar
  10. [10]
    Loring, T.A., and Pedersen, G.K.: ‘Projectivity, transitivity and AF telescopes’, Trans. Amer. Math. Soc. 350 (1998), 4313–4339.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Olsen, C.L., and Pedersen, G.K.: ‘Corona C*-algebras and their applications to lifting problems’, Math. Scand. 64 (1989), 63–86.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Pedersen, G.K.: C*-algebras and their automorphism groups, Acad. Press, 1979.Google Scholar
  13. [13]
    Pedersen, G.K.: ‘SAW*-algebras and corona C*-algebras, contributions to non-commutative topology’, J. Oper. Th. 4 (1986), 15–32.Google Scholar
  14. [14]
    Pedersen, G.K.: ‘The corona construction’, in J.B. Conway and B.B. Morrel (eds.): Proc. 1988 GPOTS-Wabash Conf., Longman Sci., 1990, pp. 49–92.Google Scholar
  15. [15]
    Pedersen, G.K.: ‘Extensions of C*-algebras’, in S. Doplicher et al. (eds.): Operator Algebras and Quantum Field Theory, Internat. Press, Cambridge, Mass., 1997, pp. 2–35.Google Scholar
  16. [16]
    Taylor, D.C.: ‘The strict topology for double centralizer algebras’, Trans. Amer. Math. Soc. 150 (1970), 633–643.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Personalised recommendations