Keywords

Knapsack Problem Knudsen Number Inertial Manifold Reidemeister Move Link Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hoste, J., and Przytycki, J.H.: ‘An invariant of dichromatic links’, Proc. Amer. Math. Soc. 105,no. 4 (1989), 1003–1007.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Jones, V.F.R.: ‘Hecke algebra representations of braid groups and link polynomials’, Ann. of Math. 126,no. 2 (1987), 335–388.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Kauffman, L.H.: ‘State models and the Jones polynomial’, Topology 26 (1987), 395–407.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Kauffman, L.H.: ‘An invariant of regular isotopy’, Trans. Amer. Math. Soc. 318,no. 2 (1990), 417–471.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Lickorish, W.B.R.: An introduction to knot theory, Springer, 1997.Google Scholar
  6. [6]
    Menasco, W.M., and Thistlethwaite, M.B.: ‘The classification of alternating links’, Ann. of Math. 138 (1993), 113–171.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Murasugi, K.: ‘Jones polynomial and classical conjectures in knot theory’, Topology 26,no. 2 (1987), 187–194.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Thistlethwaite, M.B.: ‘Kauffman polynomial and alternating links’, Topology 27 (1988), 311–318.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Traczyk, P.: ‘10101 has no period 7: a criterion for periodic links’, Proc. Amer. Math. Soc. 180 (1990), 845–846.CrossRefMathSciNetGoogle Scholar

References

  1. [1]
    Blomqvist, N.: ‘On a measure of dependence between two random variables’, Ann. Math. Stat. 21 (1950), 503–600.MathSciNetGoogle Scholar
  2. [2]
    Gibbons, J.D.: Nonpammetric methods for quantitative analysis, Holt, Rinehart & Winston, 1976.Google Scholar
  3. [3]
    Kendall, M.G.: ‘A new measure of rank correlation’, Biometrika 30 (1938), 81–93.MATHMathSciNetGoogle Scholar
  4. [4]
    Kendall, M.G.: Rank correlation methods, fourth ed., Charles Griffin, 1970.Google Scholar
  5. [5]
    Kruskal, W.H.: ‘Ordinal measures of association’, J. Amer. Statist. Assoc. 53 (1958), 814–861.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Nelsen, R.B.: An introduction to copulas, Springer, 1999.Google Scholar

References

  1. [1]
    Fenn, R.P., and Rourke, C.P.: ‘On Kirby’s calculus of links’, Topology 18 (1979), 1–15.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Kirby, R.: ‘A calculus for framed links in S 3’, Invent. Math. 45 (1978), 35–56.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Lickorish, W.B.R.: ‘A representation of orientable combinatorial 3-manifolds’, Ann. Math. 76 (1962), 531–540.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Wallace, A.H.: ‘Modification and cobounding manifolds’, Canad. J. Math. 12 (1960), 503–528.MathSciNetGoogle Scholar

References

  1. [1]
    Gass, S.I., and Harris, C.M. (eds.): Encyclopedia of Operations Research and Management Science, Kluwer Acad. Publ., 1996, pp. 325–326.Google Scholar
  2. [2]
    Grötschel, M., and Lovász, L.: ‘Combinatorial optimization’, in R.L. Graham, M. Grötschel, and L. Lovász (eds.): Handbook of Combinatorics, Elsevier, 1995, pp. 1541–1579.Google Scholar

References

  1. [1]
    Bouchut, F., Golse, F., and Pulvirenti, M.: Kinetic equations and asymptotic theories, Vol. 4 of Series in Appl. Math., Elsevier/Gauthier-Villars, 2000.Google Scholar
  2. [2]
    Cercignani, C., Illner, R., and Pulvirenti, M.: The mathematical theory of dilute gases, Applied Math. Sci. Springer, 1994.Google Scholar
  3. [3]
    Cercignani, C., and Lampis, M.: ‘On the H-theorem for polyatomic gases’, J. Statist. Phys. 26 (1981), 795–801.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Morrey, C.: ‘On the derivation of the equations of hydrodynamics from statistical mechanics’, Commun. Pure Appl. Math. 8 (1955), 279–326.MATHCrossRefMathSciNetGoogle Scholar

References

  1. [1]
    Engel, K.: Sperner theory, Cambridge Univ. Press, 1997.Google Scholar
  2. [2]
    Frankl, P.: ‘Extremal set systems’, in R.L. Graham, M. Grötschel, and L. Lovász (eds.): Handbook of Combinatorics, Vol. 2, Elsevier, 1995, pp. 1293–1329.Google Scholar
  3. [3]
    Katona, G.O.H.: ‘A theorem of finite sets’: Theory of Graphs. Proc. Colloq. Tihany, Akad. Kiado, 1966, pp. 187–207.Google Scholar
  4. [4]
    Kruskal, J.B.: ‘The number of simplices in a complex’: Mathematical Optimization Techniques, Univ. California Press, 1963, pp. 251–278.Google Scholar

References

  1. [1]
    Armbruster, D., Guckenheimer, J., and Holmes, P.: ‘Kuramoto-Sivashinsky dynamics on the center-unstable manifold’, SIAM J. Appl. Math. 49 (1989), 676–691.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Chow, C.C., and Hwa, T.: ‘Defect-mediated stability: an effective hydrodynamic theory of spatiotemporal chaos’, Physica D 84 (1995), 494–512.CrossRefGoogle Scholar
  3. [3]
    Cohen, B., Krommes, J., Tang, W., and Rosenbluth, M.: ‘Nonlinear saturation of the dissipative trapped-ion mode by mode coupling’, Nucl. Fus. 16 (1976), 971–992.Google Scholar
  4. [4]
    Collet, P., Eckmann, J.-P., Epstein, H., and Stubbe, J.: ‘Analyticity for the Kuramoto-Sivashinsky equation’, Physica D 67 (1993), 321–326.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Collet, P., Eckmann, J.-P., Epstein, H., and Stubbe, J.: ‘A global attracting set for the Kuramoto-Sivashinsky equation’, Commun. Math. Phys. 152 (1993), 203–214.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Constantin, P., Foias, C., Nicolaenko, B., and Temam, R.: Integral manifolds and inertial manifolds for dissipative partial differential equations, Vol. 70 of Appl. Math. Sci., Springer, 1989.Google Scholar
  7. [7]
    Conte, R., and Musette, M.: ‘Painlevé analysis and Bäcklund transformation in the Kuramoto-Sivashinsky equation’, J. Phys. A 22 (1989), 169–177.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Cross, M., and Hohenberg, P.: ‘Pattern formation outside of equilibrium’, Rev. Mod. Phys. 65 (1993), 851–1112.CrossRefGoogle Scholar
  9. [9]
    Elgin, J.N., and Wu, X.: ‘Stability of cellular states of the Kuramoto-Sivashinsky equation’, SIAM J. Appl. Math. 56 (1996), 1621–1638.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Foias, C., Nicolaenko, B., Sell, G.R., and Temam, R.: ‘Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension’, J. Math. Pures Appl. 67 (1988), 197–226.MATHMathSciNetGoogle Scholar
  11. [11]
    Frisch, U., She, Z.S., and Thual, O.: ‘Viscoelastic behaviour of cellular solutions to the Kuramoto-Sivashinsky model’, J. Fluid Mech. 168 (1986), 221–240.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Goodman, J.: ‘Stability of the Kuramoto-Sivashinsky and related systems’, Commun. Pure Appl. Math. 47 (1994), 293–306.MATHCrossRefGoogle Scholar
  13. [13]
    Halpin-Healy, T., and Zhang, Y.-C.: ‘Kinetic roughening phenomena, stochastic growth, directed polymers and all that’, Phys. Rept. 254 (1995), 215–414.CrossRefGoogle Scholar
  14. [14]
    Hyman, J.M., and Nicolaenko, B.: ‘The Kuramoto-Sivashinsky equation: A bridge between PDEs and dynamical systems’, Physica D 18 (1986), 113–126.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Hyman, J.M., Nicolaenko, B., and Zaleski, S.: ‘Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces’, Physica D 23 (1986), 265–292.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Jolly, M., Kevrekidis, I., and Titi, E.: ‘Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computation’, Physica D 44 (1990), 38–60.CrossRefMathSciNetGoogle Scholar
  17. [17]
    Kardar, M., Parisi, G., and Zhang, Y.-C.: ‘Dynamic scaling of growing interfaces’, Phys. Rev. Lett. 56 (1986), 889–892.MATHCrossRefGoogle Scholar
  18. [18]
    Kevrekidis, I.G., Nicolaenko, B., and Scovel, J.C.: ‘Back in the saddle again: A computer assisted study of the Kuramoto-Sivashinsky equation’, SIAM J. Appl. Math. 50 (1990), 760–790.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Kuramoto, Y., and Tsuzuki, T.: ‘Persistent propagation of concentration waves in dissipative media far from thermal equilibrium’, Progr. Theoret. Phys. 55 (1976), 356–369.CrossRefGoogle Scholar
  20. [20]
    Laquey, R., Mahajan, S., Rutherford, P., and Tang, W.: ‘Nonlinear saturation of the trapped-ion mode’, Phys. Rev. Lett. 34 (1975), 391–394.CrossRefGoogle Scholar
  21. [21]
    L’vov, V.S., Lbbedev, V.V., Paton, M., and Procaccia, I.: ‘Proof of scale invariant solutions in the Kardar-Parisi-Zhang and Kuramoto-Sivashinsky equations in 1 + 1 dimensions: analytical and numerical results’, Nonlinearity 6 (1993), 25–47.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Manneville, P.: ‘Liapounov exponents for the Kuramoto-Sivashinsky model’, in U. Frisch, J. Keller, G. Papanicolaou, and O. Pironneau (eds.): Macroscopic Modelling of Turbulent Flows, Vol. 230 of Lecture Notes in Physics, Springer, 1985, pp. 319–326.Google Scholar
  23. [23]
    Manneville, P.: Dissipative structures and weak turbulence, Acad. Press, 1990.Google Scholar
  24. [24]
    Michelson, D.: ‘Steady solutions of the Kuramoto-Sivashinsky equation’, Physica D 19 (1986), 89–111.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Misbah, C., and Valance, A.: ‘Secondary instabilities in the stabilized Kuramoto-Sivashinsky equation’, Phys. Rev. E 49 (1994), 166–183.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Nicolaenko, B., Scheurer, B., and Temam, R.: ‘Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors’, Physica D 16 (1985), 155–183.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Pomeau, Y., Pumir, A., and Pelce, P.: ‘Intrinsic stochasticity with many degrees of freedom’, J. Statist. Phys. 37 (1984), 39–49.CrossRefMathSciNetGoogle Scholar
  28. [28]
    Pumir, A.: ‘Statistical properties of an equation describing fluid interfaces’, J. Physique 46 (1985), 511–522.CrossRefMathSciNetGoogle Scholar
  29. [29]
    Sivashinsky, G.: ‘Nonlinear analysis of hydrodynamic instability in laminar flames I. Derivation of basic equations’, Ada Astron. 4 (1977), 1177–1206.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Sivashinsky, G., and Michelson, D.: ‘On irregular wavy flow of a liquid film down a vertical plane’, Progr. Theoret. Phys. 63 (1980), 2112–2114.CrossRefGoogle Scholar
  31. [31]
    Sneppen, K., Krug, J., Jensen, M., Jayaprakash, C., and Bohr, T.: ‘Dynamic scaling and crossover analysis for the Kuramoto-Sivashinsky equation’, Phys. Rev. A 46 (1992), R7351–R7354.CrossRefGoogle Scholar
  32. [32]
    Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, second ed., Vol. 68 of Applied Math. Sci., Springer, 1997.Google Scholar
  33. [33]
    Wittenberg, R.W., and Holmes, P.: ‘Scale and space localization in the Kuramoto-Sivashinsky equation’, Chaos 9 (1999), 452–465.CrossRefGoogle Scholar
  34. [34]
    Yakhot, V.: ‘Large-scale properties of unstable systems governed by the Kuramoto-Sivashinski equation’, Phys. Rev. A 24 (1981), 642–644.CrossRefMathSciNetGoogle Scholar
  35. [35]
    Zaleski, S.: ‘A stochastic model for the large scale dynamics of some fluctuating interfaces’, Physica D 34 (1989), 427–438.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Personalised recommendations