Skip to main content

Historical Overview of Glycosaminoglycans (GAGs) and their Potential Value in the Treatment of Alzheimer’s Disease

  • Chapter
Mapping the Progress of Alzheimer’s and Parkinson’s Disease

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 51))

  • 415 Accesses

Abstract

“Dies annorum nostrum sunt septaginta anni aut in valentibus octoginta anni et maior pars eorum labor et dolor….” [1]. The years in our life are seventy, eighty for the more resistant, but most of them are work and pain. This is the translation of Psalm 89 recognizable as one of the oldest documents concerning duration of life; it is attributed to Moses and it was translated 1,300 years later from Hebrew into Latin. Not much has changed for the individual span of life: once a proper environment allows our genoma to express its potentialities, some of us can reach or even exceed the age of one hundred years. In this context senile dementia, and particularly Alzheimer’s disease (AD), shortens life and adds a substantial amount of pain to our days; that is why in every part of the world a lot of efforts are devoted to understand all the possible mechanisms that may bring our brain to the loss of life consciousness. The results of these efforts are expressed by a quite variegate number of theories. One of these is related to glycosaminoglycans (GAGs) and proteoglycans (PGs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Psalm 90 (89): in Nova Vulgata Bibliorum Sacrorum. (Libreria Editrice Vaticana, 1986).

    Google Scholar 

  2. Jackson, R.L et al.: Glycosaminoglycans: Molecular Properties, Protein Interaction, and Role in Physiological Processes. Physiolol. Rev. 71:481–539 (1991).

    CAS  Google Scholar 

  3. Lindahl U.; Lidholt, K.; Spillmann, D.; Kjellén L.: More to “heparin” than anticoagulation. Throm. Res. 75: 1–32 (1994).

    Article  CAS  Google Scholar 

  4. Casu, B.: Structure and biological activity of heparin. In: Tipson R.S.; Horton D.: Advance in Carbohydrate Chemistry and Biochemisrty (Academic Press, Inc. 43:51–127 1985).

    Google Scholar 

  5. Kraemer, P.M.; Smith, D.A.: High molecular-weigth heparan sulfate from the cell surface. Biochem. Biophys. Res. Commun. 56: 423–430 (1974).

    Article  PubMed  CAS  Google Scholar 

  6. Bernfield, M.; Kokenyesi, R.; Kato, M.; Hinkes, M.; Spring, J.; Gallo, R.; Lose, E.: Biology or syndecans: Annu. Rev. Cell. Biol. 8: 333–364 (1992).

    Article  Google Scholar 

  7. David, G.; Lories, V.; Decock, B.; Marynen, P.; Cassiman, J.J.; Van Den Berghe, H.: Molecular cloning of a phosphatidilinositol-anchored membrane heparan sulfate proteoglycan from human cell fibroblasts. J. Cell. Biol. 124: 149–160 (1994).

    Article  Google Scholar 

  8. Kallunki, P.; Tryggvason, K.: Human basement membrane heparan sulfate proteoglycan core protein: A467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. Cell. Biol. 116: 559–571 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. Kiang, W.-L. et al.: Glycosaminoglycans and Glycoproteins Associated with Microsomal Subfraction of Brain and Liver. Biochemistry 18: 3841–3848 (1978).

    Article  Google Scholar 

  10. Schubert, D.; Schroeder, R. et al.: Amyloid β Protein Precursor Is Possibly a Heparan Sulfate Proteoglycan Core Protein. Science 241: 223–226 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. Martin, G.R.; Timpl, R.: Laminin and other basament membrane components. Annu. Rev. Cell. Biol. 3:57–85 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. Kouzi-Koliakos, K.; Koliakos, G. G.; Tsilibary, E.C.; Furcht, L.T.; Charonis, A.S.: Mapping of three major heparin-bindings sites on laminin and identification of a novel heparin-binding site on the B1 chain. J. Biol. Chem. 264: 17971–17978 (1989).

    PubMed  CAS  Google Scholar 

  13. Suzuki, S.; Pierschbaker, M.D. et al.: Domain structure of vitronectin. Alignment of active sites. J. Biok. Chem. 259: 15307–15314 (1984).

    CAS  Google Scholar 

  14. Peterson, C.B.; Morgon, M.T.; Blackburn, M.N.: Histidine-rich glycoprotein modulation of the anticoagulant activity of heparin. Evidence for mechanism involving competition with both antithrombin and thrombin for heparin binding. J. Biol. Chem. 262: 7567–7574 (1987).

    PubMed  CAS  Google Scholar 

  15. Heremans, A.; De Cock, B. et al.: The core protein of the matrix-associated heparan sulfate proteoglycan binds to fibronectin. J. Biol. Chem. 265: 8716–8724 (1990).

    PubMed  CAS  Google Scholar 

  16. Khan, M.Y.; Jaikaria, N.S. et al.: Structural changes in the NH2-terminal domain of fibronectin upon interaction with heparin. J. Biol. Chem. 263: 11314–11318 (1988).

    PubMed  CAS  Google Scholar 

  17. Kaesberg, P.R.; Ershler, W.B.; Esko, J.D.; Mosher, D.F.: Chinese hamster ovary cell adhesion to human platelet thrombospondin is dependent on cell surface heparan sulfate proteoglycan. J. Clin. Invest. 83: 994–1001 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. Burgess, W.H.; Maciag, T.: The heparin-binding (fifbroblast) growth factor family of proteins. Annu. Rev. Biochem. 58: 575–606 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. Morrison, R.S.; Sharma, A.; De Vellis, J.; Bradshaw, R.A.: Basic fibroblast growth tactor support me survival of cerebral cortical neurons in primary culture. Proc. Natl. Acad. Sci. USA 83. 7537–7541 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. Yayon, A.; Klagsburn, M.; Esko, J.D.; Leder, P.; Ornitz, D.M.: Cell surface, heparin-like molecule are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 64: 841–848 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. Gordon P.B.; Choi, H.U.; Conn, G.; Ahmed, A.; Ehrman, B.; Rosenberg, L.; Hatcher, V.B.: Extracellular matrix heparan sulfate proteoglycans modulate the mytogenic capacity of acidic fibroblast growth factor. J. Cell. Physiol. 140: 584–592 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. Saksela, O; Moscatelli, D; Sommer, A.; Rifkin, D.B.: Endothelial cell-derived heparan sulfate binds oasic fibroblast growth factor and protects it from proteolytic degradation. J. Cell. Biol. 107: 743–751 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. Gospodarowicz, D.; Cheng, J.: Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol. 128: 474–484 (1986).

    Article  Google Scholar 

  24. Carrel, R.W.; Christey, P.B.; Boswell, D.R.: Serpins: antithrombin and other inhibitors of coagulation and fibrinolysis evidence from amino acid sequences. In: Thrombosys, Haemostasis (Verstraete, M. et al.: Leuven Univ. Press:1–15 1987).

    Google Scholar 

  25. Stone, S.R.; Nick, H.; Hofsteenge, J.; Monard, D.: Glial-derived neurite-promoting factor ia a slow-binding inhibitor of tripsin, thrombin, and urokinase. Arch. Biochem.Biophys. 252: 237–244 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. Wagner, S.L.; Geddes, J.W.; Cotman, C.W.; Lau, A.L.; Gurwitz, D.; Isakson, P.J.; Cunningham, D.D.: Protease nexin-1, an antithrombin with neurite outgrowth activity, is reduced in Alzheimer disease. Proc. Natl. Acad. Sci. USA 86:8284–8288 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. Meier, R.P.; Spreier, P.; Ortmann, A.; Harel, A.; Monard, D.: Induction of glia-derived nexin after lesion of a peripheral nerve. Nature (Lond.) 342: 548–550 (1989).

    Article  CAS  Google Scholar 

  28. Folkman, J.; Klagsburn, M.; Sasse, J.; Wadzinski, M.; Ingber, D.; Vlodayski, I.: A heparin binding angiogenic protein -basic fibroblast growth factor- is stored within basement membrane. Am. J. Pathol. 130: 393–400 (1988).

    PubMed  CAS  Google Scholar 

  29. Snow, A.D.; Willmer, J.; Kisilevski, R.: Sulfated Glycosaminoglycans: A Common Constituent of All Amyloidosis? Lab. Invest. 56: 120–123 (1987).

    PubMed  CAS  Google Scholar 

  30. Snow, D.A.; Wight, T.N.; Nochlin, D. et al.: Immunolocalization of Heparan Sulfate Proteoglycans to the Prion Protein Amyloid Plaques of Gerstmann-Straussler Syndrome, Creutzfeldt-Jakob Disease and Scrapie. Lab. Invest. 63: 601–611 (1990).

    PubMed  CAS  Google Scholar 

  31. Narindrasorasak, S.; Lowery, D.; Gonzales-DeWitt, P.; Poorman, R.A.; et al.: High Affinity Interaction between the Alzheimer’s β-Amiyloid Precursor Proteins and the Basement Membrane Form of Heparan Sulfate Proteoglycan. J. Biol. Chem. 20: 12878–12883 (1991).

    Google Scholar 

  32. Kang, J.; Lemaire, H-G.; Unterbeck, A.; Salbaum, J.M.; Maters, C.L.; Grzeschik, K-H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B.: The precursor of Alzheimer’s disease amyloid A4 protein resembles a cellsurface receptor. Nature 325: 733–736 (1987).

    Article  PubMed  CAS  Google Scholar 

  33. Wisniewski, T.; Lalowski, M.; Levy, E.; Marques, M.R.F.; Frangione, B.: The amino acid sequence of neuritic plaque amyloid from a familial Alzeimer’s disease patient. Ann. Neurol. 35: 245–246 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. Buée, L.; Ding, W.; Anderson, J.P.; et al.: Binding of vascular heparan sulsate proteoglycan to Alzheimer’s amyloid precursor protein is mediated in part by the N-terminal region of A4 peptide. Brain Research 627: 199–204 (1993).

    Article  PubMed  Google Scholar 

  35. Fredrickson, R.C.A.; Astroglia in Alzheimer’s disease. Neurobiol. Aging 13: 239–253 (1991).

    Article  Google Scholar 

  36. Fraser, P.E.; Nguyen, J.T.; Chin, D.T.; Kirschner, D.A.: Effect of sulfate ions on Alzheimer β/A4 peptide assemblies: implication for amyloid fibril-proteoglycan interaction. J. Neurochem. 59: 1531–1540 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. Brunden K.R.; Richter-Cook, N.J.; Chaturvedi, N.; Frederikson R.C.A.: pH dependent Binding of Synthetic β-amyloid Peptides to Glycosaminoglycans. J. Neurochem. 61: 2147–2154 (1993).

    Article  PubMed  CAS  Google Scholar 

  38. Snow, A.D.; Sekiguchi, R.; Nicholin, D.; et al: An inportant Role of Heparan Sulfate Proteoglycan (Perlecan) in a model System for the depositon and Persistence of Fibrillar Aβ-Amyloid in Rat Brain. Neuron 12: 219–234 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. Leveugle, B.; Ding W.; Laurence, F.; Dehouck M.P.; Scanameo A.; Cecchelli R.; Fillit H. Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide. J. Neurochem. 70/2: 736–744 (1998).

    PubMed  CAS  Google Scholar 

  40. Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T.: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631–639 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. Arnold, S.E.; Hyman, B.T.; Flory, J.; Damasio, A.R.; Van Hoesen, G.W.: The topografical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in cerebral cortex of patients with Alzheimer’s disease. Cereb. Cortex.1: 103–116 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. Grundke-Iqbal, I.; Iqbal, K.; Quinlan, M., et al.: Microtubule-associated protein tau: a component of Alzheimer paired helical filaments. J. Biol. Chem. 261: 6084–6089 (1986).

    PubMed  CAS  Google Scholar 

  43. Trojanowski, J.Q.; Lee, V.M.-Y.: Paired helical filament τ in Alzheimerr’s disease: The kinase connection. Am. J. Pathol. 144: 449–453 (1994).

    PubMed  CAS  Google Scholar 

  44. Vigo-Pelfrey C.; Seubert, P.; Barbour, R.; et al.: Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiology 45: 788–793 (1995).

    CAS  Google Scholar 

  45. Wille, H.; Drewers, G.; Biernat, J.; Mandelkow, E.-M.; Mandelkow, E.: Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J. Cell. Biol. 118: 573–584 (1992).

    Article  PubMed  CAS  Google Scholar 

  46. Perry, G.; Siedlak, S.L.; Kawai, M.; Cras, P.; et al.: Neurobibrillary tangles, neuropil threads and seniles plaques all contain abundant binding sites for basic fibroblastic growth factor (-FGF). J. Neuropathol. Exp. Neurol. 49: 318 (1990).

    Article  Google Scholar 

  47. Perry, G.; Sieslak, S.L.; Richey, P.; Kawai, M.; et al.: Association of Heparan Sulfate proteoglycan with Neurofibrillary Tangles of Alzheimer’s Disease. J. Neurosci. 11: 3679–3683 (1991).

    PubMed  CAS  Google Scholar 

  48. Galloway, P.G.; Mulvihll, P.; Siedlak, S.L.; Mijars, M.; et al.: Immunochemical demonstration of tropomyosin in the neurofibrillary pathology of Alzheimer disease. Am. J. Pathol. 137: 291–300 (1990).

    PubMed  CAS  Google Scholar 

  49. Tabaton, M.; Perry, G.; Autilio-Gambetti, L.; Manetto, V.; Gambetti, P.: Influence of Neuronal Location on Antigenic properties of Neurofibrillary Tangles. Ann. Neurol. 23: 604–610 (1988).

    Article  PubMed  CAS  Google Scholar 

  50. Carolyn, R.E.; Ala, T.A.; Frey, W.H.: Ganglioside monoclonal antibody (A2B5) labels Alzheimer’s neurofibrillary tangles. Neurobiology 37: 768–772 (1987).

    Google Scholar 

  51. Mesulan, M.M.; Moran, M.A.: Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s disease. Ann. Neurol. 22: 223–228 (1987).

    Article  Google Scholar 

  52. Klier, F.G.; Cole, G.; Stallcup, W.; Schubert, D.: Amyloid β-protein precursor is associated with extracellular matrix. Brain Res. 515: 336–342 (1990).

    Article  PubMed  CAS  Google Scholar 

  53. Namba, Y., Tomonaga, M.; Kawasaki, H.; et al.: Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Crutzfeld-Jakob disease. Brain Res. 541: 163–166 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. Goedert, M.; Jakes, R.; Spillantini, M.G.; Hasegawa, M.; Smith, M.J.; Crowther, R.A.: Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383: 550–553 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. Prino, G.: Pharmacological Profile of Ateroid. In:Ban, T.A.; Lehmann, H.E.: Diagnosis and Treatment of Old Age Dementias (Karger Basel 23: 68–75 1989).

    Google Scholar 

  56. Pescador, R.; Mantovani, M.; Niada, R.: Plasma lipoprotein rearramgment in the rabbit induced by mucopolysaccharides from mammalian tissue (Ateroid). Atherogenese 4: suppl IV: 210–216 (1979).

    CAS  Google Scholar 

  57. Pescador, R.; Madonna, M.: Pharmacokinetics of rluorescin-labelled giycosaminogiycans anu their lipoprotein lipase-inducing activity in the rat. Arzneimittel-Forsh. 32: 819–824 (1982).

    CAS  Google Scholar 

  58. Lorens, S.; Guschwan, B.S.; Norio, H; Van De Kar, L.: Walenga, J.M.; Fareed, J.: Behavioral, Endocrine, and Neurochemical Effects of Sulfomucopolysaccharide Treatment in the Aged Fisher 344 Male Rat. Semin.Thromb. Haemost. 17 suppl 2: 164–173 (1991).

    Google Scholar 

  59. Parnetti, L.; Ban, T.A.; Senin, U.: Glycosaminoglycan Polysulfate in Primary Degenerative Dementia (pilot study of Biologic and Clinical Effects). Neuropsychobiology 31: 76–80 (1995).

    Article  PubMed  CAS  Google Scholar 

  60. Brane, G.; Gottfries, C.G.; Blennow, K.; Karlsson, I.; Leckan, A.; Parnetti, L.; Svennerholm L.; Wallin, A.: Monoamine metabolites in cerebrospinal fluid and behavioral rating in patients with early and late onset of Alzheimer dementia. Alzheimer Dis. Ass. Disord. 3: 148–156 (1989).

    Article  CAS  Google Scholar 

  61. Parnetti, L.; Gottfries, J.; Karlson, I; Langstrom, G., Gottfries, C.G.; Svennerholm, L.: Monoamines and their metabolites in cerebrospinal fluid of patients with senile dementia of Alzheimer type using high performance liquid chromatography-mass spectrometry. Acta Psychiatr. Scand. 75: 542–548 (1987).

    Article  PubMed  CAS  Google Scholar 

  62. Conti, L.; Pacidi, G.F.; Cassano, G.: Ateroid in the Treatment of Dementia: Results of a Clinical Trial. In: Ban, T.A.; Lehmann, H.E.: Diagnosis and Treatment of Old Age Dementias (Karger Basel 23: 76–84 1989).

    Google Scholar 

  63. Ban, T.A.; Morey, L.C.; Aguglia, E.; et al.: Glycosaminoglycan polysulphate in th treatment of old age dementias. Prog. Neuro- Psychopharmacol. Biol. Psychiat. 15: 323–342 (1991).

    Article  CAS  Google Scholar 

  64. Lindahl, B.; Eriksson, L.; Lindahl, U.: Structure of Heparan sulpnate from numan brain, witn special regaru to Alzheimer’s disease. Biochem. J. 306: 177–184 (1995).

    PubMed  CAS  Google Scholar 

  65. Cotman, C.W.: Report of Alzheimer’s Disease Working Group A. Neurobiol. Aging 15 Suppl 2: S17–S22 (1994).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Cornelli, U. et al. (2002). Historical Overview of Glycosaminoglycans (GAGs) and their Potential Value in the Treatment of Alzheimer’s Disease. In: Mizuno, Y., Fisher, A., Hanin, I. (eds) Mapping the Progress of Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 51. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-47593-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-47593-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0973-5

  • Online ISBN: 978-0-306-47593-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics