Leukoencephalopathy due to Complex II Deficiency and Bi-Allelic SDHB Mutations: Further Cases and Implications for Genetic Counselling

  • Sabine Grønborg
  • Niklas Darin
  • Maria J. Miranda
  • Bodil Damgaard
  • Jorge Asin Cayuela
  • Anders Oldfors
  • Gittan Kollberg
  • Thomas V. O. Hansen
  • Kirstine Ravn
  • Flemming Wibrand
  • Elsebet Østergaard
Case Report
Part of the JIMD Reports book series (JIMD, volume 33)


Isolated complex II deficiency is a rare cause of mitochondrial disease and bi-allelic mutations in SDHB have been identified in only a few patients with complex II deficiency and a progressive neurological phenotype with onset in infancy. On the other hand, heterozygous SDHB mutations are a well-known cause of familial paraganglioma/pheochromocytoma and renal cell cancer. Here, we describe two additional patients with respiratory chain deficiency due to bi-allelic SDHB mutations. The patients’ clinical, neuroradiological, and biochemical phenotype is discussed according to current knowledge on complex II and SDHB deficiency and is well in line with previously described cases, thus confirming the specific neuroradiological presentation of complex II deficiency that recently has emerged. The patients’ genotype revealed one novel SDHB mutation, and one SDHB mutation, which previously has been described in heterozygous form in patients with familial paraganglioma/pheochromocytoma and/or renal cell cancer. This is only the second example in the literature where one specific SDHx mutation is associated with both recessive mitochondrial disease in one patient and familial paraganglioma/pheochromocytoma in others. Due to uncertainties regarding penetrance of different heterozygous SDHB mutations, we argue that all heterozygous SDHB mutation carriers identified in relation to SDHB-related leukoencephalopathy should be referred to relevant surveillance programs for paraganglioma/pheochromocytoma and renal cell cancer. The diagnosis of complex II deficiency due to SDHB mutations therefore raises implications for genetic counselling that go beyond the recurrence risk in the family according to an autosomal recessive inheritance.


Complex II Familial paraganglioma/pheochromocytoma Leukoencephalopathy SDH SDHB 



Swedish Research Council (AO).

Supplementary material

978-3-662-55012-0_582_MOESM1_ESM.xlsx (42 kb)
Table S1 Respiratory rates and enzyme activities in muscle and fibroblasts of patient 1 and 2 (XLSX 42 kb)


  1. Alston CL, Davison JE, Meloni F et al (2012) Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency. J Med Genet 49:569–577CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amar L, Bertherat J, Baudin E et al (2005) Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 23:8812–8818CrossRefPubMedGoogle Scholar
  3. Bricout M, Grevent D, Lebre AS et al (2014) Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J Med Genet 51:429–435CrossRefPubMedGoogle Scholar
  4. Brockmann K, Bjornstad A, Dechent P et al (2002) Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol 52:38–46CrossRefPubMedGoogle Scholar
  5. Cerecer-Gil NY, Figuera LE, Llamas FJ et al (2010) Mutation of SDHB is a cause of hypoxia-related high-altitude paraganglioma. Clin Cancer Res 16:4148–4154CrossRefPubMedGoogle Scholar
  6. DiMauro S, Schon EA, Carelli V, Hirano M (2013) The clinical maze of mitochondrial neurology. Nat Rev Neurol 9:429–444CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ghezzi D, Goffrini P, Uziel G et al (2009) SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet 41:654–656CrossRefPubMedGoogle Scholar
  8. Goldstein AC, Bhatia P, Vento JM (2013) Mitochondrial disease in childhood: nuclear encoded. Neurotherapeutics 10:212–226CrossRefPubMedPubMedCentralGoogle Scholar
  9. Helman G, Caldovic L, Whitehead MT et al (2015) Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy. Ann Neurol 79(3):379–386CrossRefGoogle Scholar
  10. Jackson CB, Nuoffer JM, Hahn D et al (2014) Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. J Med Genet 51:170–175CrossRefPubMedGoogle Scholar
  11. Jain-Ghai S, Cameron JM, Al Maawali A et al (2013) Complex II deficiency – a case report and review of the literature. Am J Med Genet A 161A:285–294CrossRefPubMedGoogle Scholar
  12. Kunst HP, Rutten MH, de Monnink JP et al (2011) SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res 17:247–254CrossRefPubMedGoogle Scholar
  13. Larsen S, Nielsen J, Hansen CN et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360CrossRefPubMedPubMedCentralGoogle Scholar
  14. Morato L, Bertini E, Verrigni D et al (2014) Mitochondrial dysfunction in central nervous system white matter disorders. Glia 62:1878–1894CrossRefPubMedGoogle Scholar
  15. Neumann HP, Pawlu C, Peczkowska M et al (2004) Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292:943–951CrossRefPubMedGoogle Scholar
  16. Ostergaard E, Hansen FJ, Sorensen N et al (2007) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130:853–861CrossRefPubMedGoogle Scholar
  17. Ostergaard E, Duno M, Batbayli M, Vilhelmsen K, Rosenberg T (2011) A novel MERTK deletion is a common founder mutation in the Faroe Islands and is responsible for a high proportion of retinitis pigmentosa cases. Mol Vis 17:1485–1492PubMedPubMedCentralGoogle Scholar
  18. Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123CrossRefPubMedPubMedCentralGoogle Scholar
  19. Parikh S, Bernard G, Leventer RJ et al (2015) A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies. Mol Genet Metab 114:501–515CrossRefPubMedGoogle Scholar
  20. Peterson LA, Litzendorf M, Ringel MD, Vaccaro PS (2014) SDHB gene mutation in a carotid body paraganglioma: case report and review of the paraganglioma syndromes. Ann Vasc Surg 28:1321 e9–1321 e12CrossRefGoogle Scholar
  21. Renkema GH, Wortmann SB, Smeets RJ et al (2015) SDHA mutations causing a multisystem mitochondrial disease: novel mutations and genetic overlap with hereditary tumors. Eur J Hum Genet 23:202–209CrossRefPubMedGoogle Scholar
  22. Ricketts CJ, Forman JR, Rattenberry E et al (2010) Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat 31:41–51CrossRefPubMedGoogle Scholar
  23. Ricketts CJ, Shuch B, Vocke CD et al (2012) Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 188:2063–2071CrossRefPubMedGoogle Scholar
  24. Rijken JA, Niemeijer ND, Corssmit EP et al (2016) Low penetrance of paraganglioma and pheochromocytoma in an extended kindred with a germline SDHB exon 3 deletion. Clin Genet 89:128–132CrossRefPubMedGoogle Scholar
  25. Rutter J, Winge DR, Schiffman JD (2010) Succinate dehydrogenase – assembly, regulation and role in human disease. Mitochondrion 10:393–401CrossRefPubMedPubMedCentralGoogle Scholar
  26. Schiavi F, Milne RL, Anda E et al (2010) Are we overestimating the penetrance of mutations in SDHB? Hum Mutat 31:761–762CrossRefPubMedGoogle Scholar
  27. Schiffmann R, van der Knaap MS (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72:750–759CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sofou K, Kollberg G, Holmstrom M et al (2015) Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet Genomic Med 3:59–68CrossRefPubMedGoogle Scholar
  29. Tulinius MH, Holme E, Kristiansson B, Larsson NG, Oldfors A (1991) Mitochondrial encephalomyopathies in childhood. I. Biochemical and morphologic investigations. J Pediatr 119:242–250CrossRefPubMedGoogle Scholar
  30. Welander J, Soderkvist P, Gimm O (2011) Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 18:R253–R276CrossRefPubMedGoogle Scholar
  31. Wong LJ (2012) Mitochondrial syndromes with leukoencephalopathies. Semin Neurol 32:55–61CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sabine Grønborg
    • 1
  • Niklas Darin
    • 2
  • Maria J. Miranda
    • 3
  • Bodil Damgaard
    • 4
  • Jorge Asin Cayuela
    • 5
  • Anders Oldfors
    • 6
  • Gittan Kollberg
    • 5
  • Thomas V. O. Hansen
    • 7
  • Kirstine Ravn
    • 8
  • Flemming Wibrand
    • 8
  • Elsebet Østergaard
    • 8
  1. 1.Center for Rare Diseases, Department of Clinical GeneticsJuliane Marie Center, University Hospital CopenhagenCopenhagenDenmark
  2. 2.Department of PediatricsInstitute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, The Queen Silvia Children’s HospitalGothenburgSweden
  3. 3.Department of Pediatrics, Pediatric NeurologyHerlev University Hospital, Copenhagen UniversityHerlevDenmark
  4. 4.Department of Diagnostic ImagingNordsjællands HospitalHillerødDenmark
  5. 5.Department of Clinical ChemistrySahlgrenska Academy, Sahlgrenska University HospitalGothenburgSweden
  6. 6.Department of PathologyInstitute of Biomedicine, University of GothenburgGothenburgSweden
  7. 7.Center for Genomic Medicine, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
  8. 8.Department of Clinical Genetics 4062, Juliane Marie CenterUniversity Hospital CopenhagenCopenhagenDenmark

Personalised recommendations