Advertisement

Analysis of HGD Gene Mutations in Patients with Alkaptonuria from the United Kingdom: Identification of Novel Mutations

  • Jeannette L. UsherEmail author
  • David B. Ascher
  • Douglas E. V. Pires
  • Anna M. Milan
  • Tom L. Blundell
  • Lakshminarayan R. Ranganath
Research Report
Part of the JIMD Reports book series (JIMD, volume 24)

Abstract

Alkaptonuria (AKU) is a rare autosomal recessive disorder with incidence ranging from 1:100,000 to 1:250,000. The disorder is caused by a deficiency of the enzyme homogentisate 1,2-dioxygenase (HGD), which results from defects in the HGD gene. This enzyme converts homogentisic acid to maleylacetoacetate and has a major role in the catabolism of phenylalanine and tyrosine. To elucidate the mutation spectrum of the HGD gene in patients with alkaptonuria from 42 patients attending the National Alkaptonuria Centre, 14 exons of the HGD gene and the intron–exon boundaries were analysed by PCR-based sequencing. A total of 34 sequence variants was observed, confirming the genetic heterogeneity of AKU. Of these mutations, 26 were missense substitutions and four splice site mutations. There were two deletions and one duplication giving rise to frame shifts and one substitution abolishing the translation termination codon (no stop). Nine of the mutations were previously unreported novel variants. Using computational approaches based on the 3D structure, these novel mutations are predicted to affect the activity of the protein complex through destabilisation of the individual protomer structure or through disruption of protomer–protomer interactions.

Keywords

Alkaptonuria Homogentisic acid Novel mutation Rare genetic disorder Sequencing 

Notes

Acknowledgements

DBA is supported by a CJ Martin Fellowship from the National Health and Medical Research Council (NHMRC; GNT1072476). DEVP is funded by the Brazilian agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). TLB receives funding from the University of Cambridge and the Wellcome Trust.

Supplementary material

346908_1_En_380_MOESM1_ESM.docx (16 kb)
Supplementary Table 1. The single-nucleotide polymorphisms (SNPs) found in the NAC AKU patients
346908_1_En_380_MOESM2_ESM.docx (20 kb)
Supplementary Table 2. The exon distribution and frequency of HGD variants in the 42 NAC patients

References

  1. Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35(11):3823–3835PubMedCentralCrossRefPubMedGoogle Scholar
  2. Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220(1):49–65CrossRefPubMedGoogle Scholar
  3. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effects of amino acid substitutions and indels. PLoS One 7(10):e46688PubMedCentralCrossRefPubMedGoogle Scholar
  4. Davison AS, Milan AM, Hughes AT, Dutton JJ, Ranganath LR (2014) Serum concentrations and urinary excretion of homogentisic acid and tyrosine in normal subjects. Clin Chem Lab Med. doi: 10.1515/cclm-2014-0668
  5. Divina P, Kvitkovicova A, Buratti E, Vorechovsky I (2009) Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur J Hum Genet 17:759–765PubMedCentralCrossRefPubMedGoogle Scholar
  6. Fernandez-Canon JM, Granadino B, Beltran-Valero de Bernabe D et al (1996) The molecular basis of alkaptonuria. Nat Genet 14:19–24CrossRefPubMedGoogle Scholar
  7. Garrod AE (1908) The Croonian lectures on inborn errors of metabolism. Lecture II. Alkaptonuria. Lancet 2:73–79Google Scholar
  8. Helliwell TR, Gallagher JA, Ranganath L (2008) Alkaptonuria - a review of surgical and autopsy pathology. Histopathology 53(5):503–512PubMedGoogle Scholar
  9. Hughes AT, Milan AM, Christensen P et al (2014) Urine homogentisic acid and tyrosine: simultaneous analysis by liquid chromatography tandem mass spectrometry. J Chromatogr B 963:106–112CrossRefGoogle Scholar
  10. Keller JM, Macaulay W, Ohannes A et al (2005) New developments in ochronosis: review of the literature. Rheumatol Int 25(2):81–85CrossRefPubMedGoogle Scholar
  11. Kralovicova J, Vorechovsky I (2007) Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 5(19):6399–6413CrossRefGoogle Scholar
  12. La Du BN, Zannoni VG, Laster L et al (1958) The nature of the defect in tyrosine metabolism in alkaptonuria. J Biol Chem 230:251–260Google Scholar
  13. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814PubMedCentralCrossRefPubMedGoogle Scholar
  14. Phornphutkul C, Introne WJ, Perry MB et al (2002) Natural history of alkaptonuria. N Engl J Med 347:2111–2121CrossRefPubMedGoogle Scholar
  15. Pires DE, Ascher DB, Blundell TL (2014a) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30:335–342PubMedCentralCrossRefPubMedGoogle Scholar
  16. Pires DE, Ascher DB, Blundell TL (2014b) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42(W1):W314–W319PubMedCentralCrossRefPubMedGoogle Scholar
  17. Pollak MR, Chou YH, Cerda JJ et al (1993) Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nat Genet 5:201–204CrossRefPubMedGoogle Scholar
  18. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900PubMedCentralCrossRefPubMedGoogle Scholar
  19. Ranganath LR, Jarvis JC, Gallagher JA (2013) Recent advances in management of alkaptonuria. J Clin Pathol 66:367–373CrossRefPubMedGoogle Scholar
  20. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in genie. J Comp Biol 4(3):311–323CrossRefGoogle Scholar
  21. Srsen S, Muller CR, Fregin A et al (2002) Alkaptonuria in Slovakia: thirty-two years of research on phenotype and genotype. Mol Genet Metab 75(4):353–359CrossRefPubMedGoogle Scholar
  22. Taylor AM, Preston AJ, Paulk NK et al (2012) Ochronosis in a murine model of alkaptonuria is synonymous to that in the human condition. Osteoarthritis Cartilage 20(8):880–886PubMedCentralCrossRefPubMedGoogle Scholar
  23. Titus GP, Mueller CR, Burgner J et al (2000) Crystal structure of human homogentisate dioxygenase. Nat Struct Biol 7:542–546CrossRefPubMedGoogle Scholar
  24. Vilboux T, Kayser M, Introne W et al (2009) Mutation spectrum of homogentisic acid oxidase (HGD)in alkaptonuria. Hum Mutat 30(12):1611–1619PubMedCentralCrossRefPubMedGoogle Scholar
  25. Wildeman M, van Ophuizen E, den Dunnen JT, Taschner PE (2008) Improving sequence variant descriptions in mutation databases and literature using the MUTALYZER sequence variation nomenclature checker. Hum Mutat 29(1):6–13CrossRefPubMedGoogle Scholar
  26. Worth CL, Preissner R, Blundell TL (2011) SDM - a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39:W215–W222PubMedCentralCrossRefPubMedGoogle Scholar
  27. Zatkova A, Sedlackova T, Radvansky J et al (2011) Identification of 11 novel homogentisate 1,2 dioxygenase variants in alkaptonuria patients and establishment of a novel LOVD-based HGD mutation database. JIMD Rep 4:455–465Google Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jeannette L. Usher
    • 1
    Email author
  • David B. Ascher
    • 2
  • Douglas E. V. Pires
    • 2
  • Anna M. Milan
    • 1
  • Tom L. Blundell
    • 2
  • Lakshminarayan R. Ranganath
    • 1
  1. 1.Department of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospital TrustLiverpoolUK
  2. 2.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations