Advertisement

Making the White Matter Matters: Progress in Understanding Canavan’s Disease and Therapeutic Interventions Through Eight Decades

  • Seemin S. Ahmed
  • Guangping GaoEmail author
Research Report
Part of the JIMD Reports book series (JIMD, volume 19)

Abstract

Canavan’s disease (CD) is a fatal autosomal recessive pediatric leukodystrophy in which patients show severe neurodegeneration and typically die by the age of 10, though life expectancy in patients can be highly variable. Currently, there is no effective treatment for CD; however, gene therapy seems to be a feasible approach to combat the disease. Being a monogenic defect, the disease provides an excellent model system to develop gene therapy approaches that can be extended to other monogenic leukodystrophies and neurodegenerative diseases. CD results from mutations in a single gene aspartoacylase which hydrolyses N-acetyl aspartic acid (NAA) which accumulates in its absences. Since CD is one of the few diseases that show high NAA levels, it can also be used to study the enigmatic biological role of NAA. The disease was first described in 1931, and this review traces the progress made in the past 8 decades to understand the disease by enumerating current hypotheses and ongoing palliative measures to alleviate patient symptoms in the context of the latest advances in the field.

Keywords

Palliative Measure rAAV Vector Protoplasmic Astrocyte Spastic Quadriplegia Spongy Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

We would like to acknowledge the grant support from Jacob’s Cure, NTSAD Foundation, Canavan Foundation, and Public Health Service grants 1R01NS076991, P01 HL59407-11, P01 AI100263-01 from National Institutes of Health to GG.

References

  1. Adachi M, Schneck L, Cara J, Volk BW (1973) Spongy degeneration of the central nervous system (van Bogaert and Bertrand type; Canavan’s disease). A review. Hum Pathol 4(3):331–347CrossRefPubMedGoogle Scholar
  2. Ahmed SS, Li H, Cao CSE, Denninger AR, Su Q, Eaton S, Liso Navarro AA, Xie J, Szucs S, Zhang H, Moore C, Kirschner DA, Seyfried TN, Flotte TR, Matalon R, Gao G (2013) A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS gene therapy in Canavan mice. Mol Ther 12:2136–2147CrossRefGoogle Scholar
  3. Akimitsu TKK, Hanaya R, Iida K, Kiura Y, Arita K, Matsubayashi H, Ishihara K, Kitada K, Serikawa T, Sasa M (2000) Epileptic seizures induced by N-acetyl-L-aspartate in rats: in vivo and in vitro studies. Brain Res 861(1):143–150CrossRefPubMedGoogle Scholar
  4. Al-Dirbashi OY, Kurdi W, Imtiaz F et al (2009) Reliable prenatal diagnosis of Canavan disease by measuring N-acetylaspartate in amniotic fluid using liquid chromatography tandem mass spectrometry. Prenat Diagn 29(5):477–480CrossRefPubMedGoogle Scholar
  5. Ariyannur PS, Moffett JR, Manickam P et al (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res 1335:1–13CrossRefPubMedGoogle Scholar
  6. Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20(4):699–708PubMedCentralCrossRefPubMedGoogle Scholar
  7. Assadi M, Janson C, Wang DJ et al (2010) Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neurol 14(4):354–359CrossRefPubMedGoogle Scholar
  8. Baslow M (1997) A review of phylogenetic and metabolic relationships between the acylamino acids, N-acetyl-L-aspartic acid and N-acetyl-L-histidine, in the vertebrate nervous system. J Neurochem 68(4):1335–1344CrossRefPubMedGoogle Scholar
  9. Baslow MH (1999) Molecular water pumps and the aetiology of Canavan disease: a case of the sorcerer’s apprentice. J Inherit Metab Dis 22(2):99–101CrossRefPubMedGoogle Scholar
  10. Baslow MH, Resnik TR (1997) Canavan disease. Analysis of the nature of the metabolic lesions responsible for development of the observed clinical symptoms. J Mol Neurosci 9(2):109–125CrossRefPubMedGoogle Scholar
  11. Baslow MH, Kitada K, Suckow RF, Hungund BL, Serikawa T (2002) The effects of lithium chloride and other substances on levels of brain N-acetyl-L-aspartic acid in Canavan disease-like rats. Neurochem Res 27(5):403–406CrossRefPubMedGoogle Scholar
  12. Beaudet A (2001) Aspartoacylase deficiency (Canavan disease) In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, McGraw-Hill Publishers, pp 5799–5805Google Scholar
  13. Bennett MJ, Gibson KM, Sherwood WG et al (1993) Reliable prenatal diagnosis of Canavan disease (aspartoacylase deficiency): comparison of enzymatic and metabolite analysis. J Inherit Metab Dis 16(5):831–836CrossRefPubMedGoogle Scholar
  14. Bhakoo KK, Craig TJ, Styles P (2001) Developmental and regional distribution of aspartoacylase in rat brain tissue. J Neurochem 79(1):211–220CrossRefPubMedGoogle Scholar
  15. Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 13(1):23–31CrossRefPubMedGoogle Scholar
  16. Birnbaum SM, Levinton L, Kingsley RB, Greenstein JP (1952) Specificity of amino acid acylases. J Biol Chem 194:455–462PubMedGoogle Scholar
  17. Bluml S, Seymour K, Philippart M, Matalon R, Ross B (1998) Elevated brain water in Canavan disease: impact of a diuretic therapy. In: Book elevated brain water in Canavan disease: impact of a diuretic therapy. p 171Google Scholar
  18. Bruce AJBM (1995) Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 18(6):993–1002CrossRefPubMedGoogle Scholar
  19. Burger C, Gorbatyuk OS, Velardo MJ et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10(2):302–317CrossRefPubMedGoogle Scholar
  20. Canavan MM (1931) Schilder’s encephalitis periaxialis diffusa. Arch Neurol Psychiat 25:299–308Google Scholar
  21. Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13(3):528–537CrossRefPubMedGoogle Scholar
  22. Cearley CN, Vandenberghe LH, Parente MK, Carnish ER, Wilson JM, Wolfe JH (2008) Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther 16(10):1710–1718PubMedCentralCrossRefPubMedGoogle Scholar
  23. Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78(4):736–745CrossRefPubMedGoogle Scholar
  24. Chang YC, Rapoport SI, Rao J (2009) Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem Res 34(3): 536–541PubMedCentralCrossRefPubMedGoogle Scholar
  25. Chen RWCD (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274(10):6039–6042CrossRefPubMedGoogle Scholar
  26. Copray SHJ, Sher F, Casaccia-Bonnefil P, Boddeke E (2009) Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia 57(15):1579–1587PubMedCentralCrossRefPubMedGoogle Scholar
  27. D'Adamo AF Jr, Gidez LI, Yatsu FM (1968) Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain. Exp Brain Res 5(4):267–273Google Scholar
  28. Duque S, Joussemet B, Riviere C et al (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17(7):1187–1196PubMedCentralCrossRefPubMedGoogle Scholar
  29. Elpeleg ON, Shaag A (1999) The spectrum of mutations of the aspartoacylase gene in Canavan disease in non-Jewish patients. J Inherit Metab Dis 22(4):531–534CrossRefPubMedGoogle Scholar
  30. Escolar MLPM, Provenzale JM, Richards KC, Allison J, Wood S, Wenger DA, Pietryga D, Wall D, Champagne M, Morse R, Krivit W, Kurtzberg J (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352(20):2069–2081CrossRefPubMedGoogle Scholar
  31. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65PubMedCentralCrossRefPubMedGoogle Scholar
  32. Francis J, Markov V, Leone P (2013) Dietary triheptanoin rescues oligodendrocyte loss, dysmyelination and motor function in the nur7 mouse model of Canavan disease. J Inherit Metab Dis 37(3):369–381CrossRefPubMedGoogle Scholar
  33. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99(18):11854–11859PubMedCentralCrossRefPubMedGoogle Scholar
  34. Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Samulski RJ (2013) Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20(4):450–459PubMedCentralCrossRefPubMedGoogle Scholar
  35. Hermonat PLMN (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A 81(20):6466–6470PubMedCentralCrossRefPubMedGoogle Scholar
  36. Hershfield JR, Pattabiraman N, Madhavarao CN, Namboodiri MA (2007) Mutational analysis of aspartoacylase: implications for Canavan disease. Brain Res 1148:1–14PubMedCentralCrossRefPubMedGoogle Scholar
  37. Hirano A (1981) Structure of normal central myelinated fibers. Adv Neurol 31:51–68CrossRefPubMedGoogle Scholar
  38. Hunt A, Burne R (1995) Medical and nursing problems of children with neurodegenerative disease. Palliative Med 9(1):19–26CrossRefGoogle Scholar
  39. Hwu WL, Muramatsu S, Tseng SH et al (2012) Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med 4(134):134–161CrossRefGoogle Scholar
  40. Jakobs C, ten Brink HJ, Langelaar SA et al (1991) Stable isotope dilution analysis of N-acetylaspartic acid in CSF, blood, urine and amniotic fluid: accurate postnatal diagnosis and the potential for prenatal diagnosis of Canavan disease. J Inherit Metab Dis 14(5):653–660CrossRefPubMedGoogle Scholar
  41. Janson C, McPhee S, Bilaniuk L et al (2002) Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 13(11):1391–1412CrossRefPubMedGoogle Scholar
  42. Janson CG, McPhee SW, Francis J et al (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics 37(4):209–221CrossRefPubMedGoogle Scholar
  43. Kaul R, Casanova J, Johnson AB, Tang P, Matalon R (1991) Purification, characterization, and localization of aspartoacylase from bovine brain. J Neurochem 56(1):129–135CrossRefPubMedGoogle Scholar
  44. Kaul R, Gao GP, Balamurugan K, Matalon R (1993) Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5(2):118–123CrossRefPubMedGoogle Scholar
  45. Kaul R, Gao GP, Aloya M et al (1994) Canavan disease: mutations among Jewish and non-Jewish patients. Am J Hum Genet 55(1):34–41PubMedCentralPubMedGoogle Scholar
  46. Kessing LVSL, Forman JL, Andersen PK (2008) Lithium treatment and risk of dementia. Arch Gen Psychiatry 65(11):1331–1335CrossRefPubMedGoogle Scholar
  47. Kitada K, Akimitsu T, Shigematsu Y et al (2000) Accumulation of N-acetyl-L-aspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system. J Neurochem 74(6):2512–2519CrossRefPubMedGoogle Scholar
  48. Klugmann M, Symes CW, Klaussner BK et al (2003) Identification and distribution of aspartoacylase in the postnatal rat brain. Neuroreport 14(14):1837–1840CrossRefPubMedGoogle Scholar
  49. Kumar S, Biancotti JC, Matalon R, de Vellis J (2009) Lack of aspartoacylase activity disrupts survival and differentiation of neural progenitors and oligodendrocytes in a mouse model of Canavan disease. J Neurosci Res 87(15):3415–3427CrossRefPubMedGoogle Scholar
  50. Lee DHPG (2007) Mutagenesis induced by the nitric oxide donor sodium nitroprusside in mouse cells. Mutagenesis 22(1):63–67CrossRefPubMedGoogle Scholar
  51. Leone P, Janson CG, Bilaniuk L et al (2000) Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 48(1):27–38CrossRefPubMedGoogle Scholar
  52. Leone P, Shera D, McPhee SW et al (2012) Long-term follow-up after gene therapy for Canavan disease. Sci Transl Med 4(165):165ra163Google Scholar
  53. Lin WPB (2009) Endoplasmic reticulum stress in disorders of myelinating cells. Nat Neurosci 12(4):379–385PubMedCentralCrossRefPubMedGoogle Scholar
  54. Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboodiri MA (2003) Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem 86(4):824–835CrossRefPubMedGoogle Scholar
  55. Madhavarao CN, Moffett JR, Moore RA, Viola RE, Namboodiri MA, Jacobowitz DM (2004) Immunohistochemical localization of aspartoacylase in the rat central nervous system. J Comp Neurol 472(3):318–329CrossRefPubMedGoogle Scholar
  56. Madhavarao CN, Arun P, Moffett JR et al (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci U S A 102:5221–5226PubMedCentralCrossRefPubMedGoogle Scholar
  57. Madhavarao CN, Arun P, Anikster Y et al (2009) Glyceryl triacetate for Canavan disease: a low-dose trial in infants and evaluation of a higher dose for toxicity in the tremor rat model. J Inherit Metab Dis 32(5):640–650CrossRefPubMedGoogle Scholar
  58. Matalon R, Michals-Matalon K (1999a) Biochemistry and molecular biology of Canavan disease. Neurochem Res 24(4):507–513CrossRefPubMedGoogle Scholar
  59. Matalon R, Michals-Matalon K (1999b) Prenatal diagnosis of Canavan disease. Prenat Diagn 19(7):669–670CrossRefPubMedGoogle Scholar
  60. Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29(2):463–471CrossRefPubMedGoogle Scholar
  61. Matalon R, Kaul R, Michals K (1993) Canavan disease: biochemical and molecular studies. J Inherit Metab Dis 16(4):744–752CrossRefPubMedGoogle Scholar
  62. Matalon R, Rady PL, Platt KA et al (2000) Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med 2(3):165–175CrossRefPubMedGoogle Scholar
  63. Matalon R, Surendran S, Rady PL et al (2003) Adeno-associated virus-mediated aspartoacylase gene transfer to the brain of knockout mouse for Canavan disease. Mol Ther 7(5 Pt 1):580–587CrossRefPubMedGoogle Scholar
  64. McCown T (2005) Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 5(3):333–338CrossRefPubMedGoogle Scholar
  65. McPhee SW, Francis J, Janson CG et al (2005) Effects of AAV-2-mediated aspartoacylase gene transfer in the tremor rat model of Canavan disease. Brain Res Mol Brain Res 135(1–2):112–121CrossRefPubMedGoogle Scholar
  66. Mersmann N, Tkachev D, Jelinek R et al (2011) Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease. PLoS One 6(5):e2033CrossRefGoogle Scholar
  67. Mondino M BJ, Saoud M. (2013) N-acetyl-aspartate level is decreased in the prefrontal cortex in subjects at-risk for schizophrenia. Front Psychiatry 4:Article 99Google Scholar
  68. Muramatsu S, Fujimoto K, Kato S et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18(9):1731–1735PubMedCentralCrossRefPubMedGoogle Scholar
  69. Novotny EJ Jr, Hyder J, Rothman Dl (1999) Cerebral amino acids and metabolites in aminoacylase II deficiencies. J Mol Neurosci 12(3):174–175Google Scholar
  70. O'Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH (2000) Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res 880(1–2):84–91Google Scholar
  71. Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962CrossRefPubMedGoogle Scholar
  72. Pederzolli CDMC, Scapin F, Rockenbach FJ, Sgaravatti AM, Sgarbi MB, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2007) N-acetylaspartic acid promotes oxidative stress in cerebral cortex of rats. Int J Dev Neurosci 25(5):317–324CrossRefPubMedGoogle Scholar
  73. Sager TNF-JA, Hansen AJ (1997) Transient elevation of interstitial N-acetylaspartate in reversible global brain ischemia. J Neurochem 68(2):675–682CrossRefPubMedGoogle Scholar
  74. Samuel SKR, Jayavelu T, Chinnakkannu P (2005) Protein oxidative damage in arsenic induced rat brain: influence of DL-a-lipoic acid. Toxicol Lett 155:27–34CrossRefPubMedGoogle Scholar
  75. Samulski RJ, Sally M, Muzyczka N, TF eds (1999) Adeno associated viral vectors: the development of human gene therapy. Cold Spring Harbor Press, New York, pp 131–172Google Scholar
  76. Segel RAY, Zevin S, Steinberg A, Gahl WA, Fisher D, Staretz-Chacham O, Zimran A, Altarescu G (2011) A safety trial of high dose glyceryl triacetate for Canavan disease. Mol Genet Metab 103(3):203–206CrossRefPubMedGoogle Scholar
  77. Seki T, Matsubayashi H, Amano T et al (2002) Adenoviral gene transfer of aspartoacylase into the tremor rat, a genetic model of epilepsy, as a trial of gene therapy for inherited epileptic disorder. Neurosci Lett 328(3):249–252CrossRefPubMedGoogle Scholar
  78. Solsona MDFL, Boquet EM, Andrés JL (2012) Lithium citrate as treatment of Canavan disease. Clin Neuropharmacol 35(3):150–151CrossRefPubMedGoogle Scholar
  79. Sommer A, Sass JO (2012) Expression of aspartoacylase (ASPA) and Canavan disease. Gene 505(2):206–210CrossRefPubMedGoogle Scholar
  80. Spange SWT, Heinzel T, Krämer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198CrossRefPubMedGoogle Scholar
  81. Steen RGOR (2005) Abnormally high levels of brain N-acetylaspartate in children with sickle cell disease. AJNR Am J Neuroradiol 26(3):463–468PubMedGoogle Scholar
  82. Surendran S (2009) Upregulation of N-acetylaspartic acid alters inflammation, transcription and contractile associated protein levels in the stomach and smooth muscle contractility. Mol Biol Rep 36(1):201–206CrossRefPubMedGoogle Scholar
  83. Swain GP, Prociuk M, Bagel JH et al (2013) Adeno-associated virus serotypes 9 and rh10 mediate strong neuronal transduction of the dog brain. Gene Ther 21(1):28–36PubMedCentralCrossRefPubMedGoogle Scholar
  84. Taylor DLDS, Obrenovitch TP, Doheny MH, Patsalos PN, Clark JB, Symon L (1995) Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J Neurochem 65(1):275–281CrossRefPubMedGoogle Scholar
  85. Tortorella C, Ruggieri M, Di Monte E et al (2011) Serum and CSF N-acetyl aspartate levels differ in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 82:1355–1359CrossRefPubMedGoogle Scholar
  86. Traka M, Wollmann RL, Cerda SR, Dugas J, Barres BA, Popko B (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 28(45):11537–11549PubMedCentralCrossRefPubMedGoogle Scholar
  87. Tsacopoulos MMP (1996) Metabolic coupling between glia and neurons. J Neurosci 16(3):877–885PubMedGoogle Scholar
  88. Tsai G, Coyle J (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46(5):531–540CrossRefPubMedGoogle Scholar
  89. Tsai GGD, Chang RW, Flood J, Baer L, Coyle JT (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155(9):1207–1213CrossRefPubMedGoogle Scholar
  90. Waksman B (1999) Demyelinating disease: evolution of a paradigm. Neurochem Res 24(4):491–495CrossRefPubMedGoogle Scholar
  91. Wang J, Leone P, Wu G et al (2009) Myelin lipid abnormalities in the aspartoacylase-deficient tremor rat. Neurochem Res 34(1):138–148CrossRefPubMedGoogle Scholar
  92. Yang B, Li S, Wang H et al (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 22(7):1299–1309PubMedCentralCrossRefPubMedGoogle Scholar
  93. Zano S, Malik R, Szucs S, Matalon R, Viola RE (2011) Modification of aspartoacylase for potential use in enzyme replacement therapy for the treatment of Canavan disease. Mol Genet Metab 102(2):176–180PubMedCentralCrossRefPubMedGoogle Scholar
  94. Zhang H, Yang B, Mu X et al (2011) Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 8(19):1440–1448Google Scholar
  95. Zlokovic B (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.University of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations