Skip to main content

Fatty Acid Oxidation Disorders in a Chinese Population in Taiwan

Original Article

Part of the JIMD Reports book series (JIMD,volume 11)

Abstract

Background: Fatty acid oxidation (FAO) disorders are a heterogeneous group of inborn errors in the transportation and oxidation of fatty acids. FAO disorders were thought to be very rare in the Chinese population. Newborn screening for FAO disorders beginning in 2002 in Taiwan may have increased the diagnosis of this group of diseases.

Materials and Methods: Till 2012, the National Taiwan University Hospital Newborn Screening Center screened more than 800,000 newborns for FAO disorders. Both patients diagnosed through screening and patients detected after clinical manifestations were included in this study.

Results: A total of 48 patients with FAO disorders were identified during the study period. The disorders included carnitine palmitoyltransferase I deficiency, carnitine acylcarnitine translocase deficiency, carnitine palmitoyltransferase II deficiency, very long-chain acyl-CoA dehydrogenase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, multiple acyl-CoA dehydrogenase deficiency, short-chain defects, and carnitine uptake defect. Thirty-nine patients were diagnosed through newborn screening. Five false-negative newborn screening cases were noted during this period, and four patients who were not screened were diagnosed based on clinical manifestations. The ages of all patients ranged from 6 months to 22.9 years (mean age 6.6 years). Except for one case of postmortem diagnosis, there were no other mortalities.

Conclusions: The combined incidence of FAO disorders estimated by newborn screening in the Chinese population in Taiwan is 1 in 20,271 live births. Newborn screening also increases the awareness of FAO disorders and triggers clinical diagnoses of these diseases.

Keywords

  • Newborn Screening
  • Noro Virus
  • Metabolic Decompensation
  • Carnitine Supplement
  • Fatty Acid Oxidation Disorder

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Competing interests: None declared

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/8904_2013_236
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-37328-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Abbreviations

CACT:

Carnitine acylcarnitine translocase

CPT I:

Carnitine palmitoyltransferase 1

CPT II:

Carnitine palmitoyltransferase 2

CUD:

Systemic carnitine uptake defect

FAO:

Fatty acid oxidation

LCHAD/mTFP:

Long-chain 3-hydroxy acyl-CoA dehydrogenase/mitochondrial trifunctional protein

MAD deficiency/GA II:

Multiple acyl-CoA dehydrogenase deficiency/glutaric aciduria type II (synonym)

MCAD:

Medium-chain acyl-CoA dehydrogenase

MS/MS:

Tandem mass spectrometry

NBS:

Newborn screening

SCAD:

Short-chain acyl-CoA dehydrogenase

VLCAD:

Very-long-chain acyl-CoA dehydrogenase

References

  • American College of Medical Genetics Newborn Screening Expert Group (2006) Newborn screening: toward a uniform screening panel and system--executive summary. Pediatrics 117(5 Pt 2): S296–307

    Google Scholar 

  • Andresen BS, Bross P, Vianey-Saban C et al (1996) Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene. Hum Mol Genet 5(4):461–472

    PubMed  CrossRef  Google Scholar 

  • Baruteau J, Levade T, Redonnet-Vernhet I, Mesli S, Bloom MC, Broue P (2009) Hypoketotic hypoglycemia with myolysis and hypoparathyroidism: an unusual association in medium chain acyl-CoA desydrogenase deficiency (MCADD). J Pediatr Endocrinol Metab 22(12):1175–1177

    PubMed  CrossRef  CAS  Google Scholar 

  • Baruteau J, Sachs P, Broue P, et al (2012) Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis 2012 Oct 3 [Epub ahead of print]

    Google Scholar 

  • Bonnet D, Martin D, De Pascale L et al (1999) Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100(22):2248–2253

    PubMed  CrossRef  CAS  Google Scholar 

  • Brivet M, Boutron A, Slama A et al (1999) Defects in activation and transport of fatty acids. J Inherit Metab Dis 22(4):428–441

    PubMed  CrossRef  CAS  Google Scholar 

  • Chen YC, Chien YH, Chen PW et al (2013) Carnitine uptake defect (primary carnitine deficiency): risk in genotype-phenotype correlation. Hum Mutat 34(4):655

    PubMed  Google Scholar 

  • Clayton PT (2003) Diagnosis of inherited disorders of liver metabolism. J Inherit Metab Dis 26(2–3):135–146

    PubMed  CrossRef  CAS  Google Scholar 

  • El-Hattab AW, Li FY, Shen J et al (2010) Maternal systemic primary carnitine deficiency uncovered by newborn screening: clinical, biochemical, and molecular aspects. Genet Med 12(1):19–24

    PubMed  CrossRef  CAS  Google Scholar 

  • Er TK, Chen CC, Liu YY et al (2011) Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif. BMC Struct Biol 11:43

    PubMed  CrossRef  CAS  Google Scholar 

  • Ficicioglu C, Coughlin CR 2nd, Bennett MJ, Yudkoff M (2010) Very long-chain acyl-CoA dehydrogenase deficiency in a patient with normal newborn screening by tandem mass spectrometry. J Pediatr 156(3):492–494

    PubMed  CrossRef  CAS  Google Scholar 

  • Gallant NM, Leydiker K, Tang H et al (2012) Biochemical, molecular, and clinical characteristics of children with short chain acyl-CoA dehydrogenase deficiency detected by newborn screening in California. Mol Genet Metab 106(1):55–61

    PubMed  CrossRef  CAS  Google Scholar 

  • Gregersen N, Andresen BS, Corydon MJ et al (2001) Mutation analysis in mitochondrial fatty acid oxidation defects: exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum Mutat 18(3):169–189

    PubMed  CrossRef  CAS  Google Scholar 

  • Gregersen N, Andresen BS, Pedersen CB, Olsen RK, Corydon TJ, Bross P (2008) Mitochondrial fatty acid oxidation defects– remaining challenges. J Inherit Metab Dis 31(5):643–657

    PubMed  CrossRef  CAS  Google Scholar 

  • Han LS, Ye J, Qiu WJ, Gao XL, Wang Y, Gu XF (2007) Selective screening for inborn errors of metabolism on clinical patients using tandem mass spectrometry in China: a four-year report. J Inherit Metab Dis 30(4):507–514

    PubMed  CrossRef  CAS  Google Scholar 

  • Huang HP, Chu KL, Chien YH et al (2006) Tandem mass neonatal screening in Taiwan–report from one center. J Formos Med Assoc 105(11):882–886

    PubMed  CrossRef  CAS  Google Scholar 

  • Illsinger S, Lucke T, Peter M et al (2008) Carnitine-palmitoyltransferase 2 deficiency: novel mutations and relevance of newborn screening. Am J Med Genet A 146A(22):2925–2928

    PubMed  CrossRef  CAS  Google Scholar 

  • Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA (2004) L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol 287(2):C263–C269

    PubMed  CrossRef  CAS  Google Scholar 

  • Lan MY, Fu MH, Liu YF et al (2010) High frequency of ETFDH c.250G>A mutation in Taiwanese patients with late-onset lipid storage myopathy. Clin Genet 78(6):565–569

    PubMed  CrossRef  CAS  Google Scholar 

  • Lee NC, Tang NL, Chien YH et al (2010) Diagnoses of newborns and mothers with carnitine uptake defects through newborn screening. Mol Genet Metab 100(1):46–50

    PubMed  CrossRef  CAS  Google Scholar 

  • Liang WC, Ohkuma A, Hayashi YK et al (2009) ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 19(3):212–216

    PubMed  CrossRef  Google Scholar 

  • Lindner M, Hoffmann GF, Matern D (2010) Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J Inherit Metab Dis 33(5):521–526

    PubMed  CrossRef  CAS  Google Scholar 

  • Lindner M, Gramer G, Haege G et al (2011) Efficacy and outcome of expanded newborn screening for metabolic diseases–report of 10 years from South-West Germany. Orphanet J Rare Dis 6:44

    PubMed  CrossRef  Google Scholar 

  • Marquardt G, Currier R, McHugh DM et al (2012) Enhanced interpretation of newborn screening results without analyte cutoff values. Genet Med 14(7):648–655

    PubMed  CrossRef  Google Scholar 

  • McGoey RR, Marble M (2011) Positive newborn screen in a normal infant of a mother with asymptomatic very long-chain Acyl-CoA dehydrogenase deficiency. J Pediatr 158(6):1031–1032

    PubMed  CrossRef  Google Scholar 

  • Millington DS, Kodo N, Norwood DL, Roe CR (1990) Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis 13(3):321–324

    PubMed  CrossRef  CAS  Google Scholar 

  • Niu DM, Chien YH, Chiang CC et al (2010) Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. J Inherit Metab Dis 33(Suppl 2):S295–S305

    PubMed  CrossRef  Google Scholar 

  • Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S (2004) Clinical effectiveness and cost-effectiveness of neonatal screening for inborn errors of metabolism using tandem mass spectrometry: a systematic review. Health Technol Assess 8(12): iii, 1–121

    Google Scholar 

  • Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease New York. McGraw-Hill, New York, pp 2297–2326

    Google Scholar 

  • Rose EC, di San Filippo CA, Ndukwe Erlingsson UC, Ardon O, Pasquali M, Longo N (2012) Genotype-phenotype correlation in primary carnitine deficiency. Hum Mutat 33(1):118–123

    PubMed  CrossRef  CAS  Google Scholar 

  • Sahai I, Bailey JC, Eaton RB, Zytkovicz T, Harris DJ (2011) A near-miss: very long chain acyl-CoA dehydrogenase deficiency with normal primary markers in the initial well-timed newborn screening specimen. J Pediatr 158(1):172, author reply 172–173

    PubMed  Google Scholar 

  • Solis JO, Singh RH (2002) Management of fatty acid oxidation disorders: a survey of current treatment strategies. J Am Diet Assoc 102(12):1800–1803

    PubMed  CrossRef  Google Scholar 

  • Spiekerkoetter U (2010) Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J Inherit Metab Dis 33(5):527–532

    PubMed  CrossRef  CAS  Google Scholar 

  • Spiekerkoetter U, Lindner M, Santer R et al (2009a) Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis 32(4):488–497

    PubMed  CrossRef  CAS  Google Scholar 

  • Spiekerkoetter U, Lindner M, Santer R et al (2009b) Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 32(4):498–505

    PubMed  CrossRef  CAS  Google Scholar 

  • Spiekerkoetter U, Bastin J, Gillingham M, Morris A, Wijburg F, Wilcken B (2010a) Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 33(5):555–561

    PubMed  CrossRef  CAS  Google Scholar 

  • Spiekerkoetter U, Haussmann U, Mueller M et al (2010b) Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: the value of second-tier enzyme testing. J Pediatr 157(4):668–673

    PubMed  CrossRef  CAS  Google Scholar 

  • Tang NL, Hwu WL, Chan RT, Law LK, Fung LM, Zhang WM (2002) A founder mutation (R254X) of SLC22A5 (OCTN2) in Chinese primary carnitine deficiency patients. Hum Mutat 20(3):232

    PubMed  CrossRef  Google Scholar 

  • van Adel BA, Tarnopolsky MA (2009) Metabolic myopathies: update 2009. J Clin Neuromuscul Dis 10(3):97–121

    PubMed  CrossRef  Google Scholar 

  • Wanders RJ, Vreken P, den Boer ME, Wijburg FA, van Gennip AH, Ijlst L (1999) Disorders of mitochondrial fatty acyl-CoA beta-oxidation. J Inherit Metab Dis 22(4):442–487

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang ZQ, Chen XJ, Murong SX, Wang N, Wu ZY (2011) Molecular analysis of 51 unrelated pedigrees with late-onset multiple acyl-CoA dehydrogenation deficiency (MADD) in southern China confirmed the most common ETFDH mutation and high carrier frequency of c.250G>A. J Mol Med (Berl) 89(6): 569–576

    CrossRef  CAS  Google Scholar 

  • Wang L-Y, Chen N-I, Chen P-W et al (2013) Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests. BMC Med Genet 14:24

    PubMed  CrossRef  CAS  Google Scholar 

  • Wilcken B, Wiley V, Sim KG, Carpenter K (2001) Carnitine transporter defect diagnosed by newborn screening with electrospray tandem mass spectrometry. J Pediatr 138(4):581–584

    PubMed  CrossRef  CAS  Google Scholar 

  • Wilcken B, Wiley V, Hammond J, Carpenter K (2003) Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 348(23):2304–2312

    PubMed  CrossRef  CAS  Google Scholar 

  • Zytkovicz TH, Fitzgerald EF, Marsden D et al (2001) Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. Clin Chem 47(11):1945–1955

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Nicola Longo from the University of Utah for performing the mutation analysis for patients of CPT I deficiency and CPT II deficiency. This study was partially support by grants (DOH94-HP-2203, DOH95-HP-2207) from the Department of Health, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuh-Liang Hwu .

Editor information

Editors and Affiliations

Additional information

Communicated by: Jerry Vockley

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chien, YH. et al. (2013). Fatty Acid Oxidation Disorders in a Chinese Population in Taiwan. In: Zschocke, J., Gibson, K., Brown, G., Morava, E., Peters, V. (eds) JIMD Reports - Volume 11. JIMD Reports, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2013_236

Download citation

  • DOI: https://doi.org/10.1007/8904_2013_236

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37327-5

  • Online ISBN: 978-3-642-37328-2

  • eBook Packages: MedicineMedicine (R0)