American College of Medical Genetics Newborn Screening Expert Group (2006) Newborn screening: toward a uniform screening panel and system--executive summary. Pediatrics 117(5 Pt 2): S296–307
Google Scholar
Andresen BS, Bross P, Vianey-Saban C et al (1996) Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene. Hum Mol Genet 5(4):461–472
PubMed
CrossRef
Google Scholar
Baruteau J, Levade T, Redonnet-Vernhet I, Mesli S, Bloom MC, Broue P (2009) Hypoketotic hypoglycemia with myolysis and hypoparathyroidism: an unusual association in medium chain acyl-CoA desydrogenase deficiency (MCADD). J Pediatr Endocrinol Metab 22(12):1175–1177
PubMed
CrossRef
CAS
Google Scholar
Baruteau J, Sachs P, Broue P, et al (2012) Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis 2012 Oct 3 [Epub ahead of print]
Google Scholar
Bonnet D, Martin D, De Pascale L et al (1999) Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100(22):2248–2253
PubMed
CrossRef
CAS
Google Scholar
Brivet M, Boutron A, Slama A et al (1999) Defects in activation and transport of fatty acids. J Inherit Metab Dis 22(4):428–441
PubMed
CrossRef
CAS
Google Scholar
Chen YC, Chien YH, Chen PW et al (2013) Carnitine uptake defect (primary carnitine deficiency): risk in genotype-phenotype correlation. Hum Mutat 34(4):655
PubMed
Google Scholar
Clayton PT (2003) Diagnosis of inherited disorders of liver metabolism. J Inherit Metab Dis 26(2–3):135–146
PubMed
CrossRef
CAS
Google Scholar
El-Hattab AW, Li FY, Shen J et al (2010) Maternal systemic primary carnitine deficiency uncovered by newborn screening: clinical, biochemical, and molecular aspects. Genet Med 12(1):19–24
PubMed
CrossRef
CAS
Google Scholar
Er TK, Chen CC, Liu YY et al (2011) Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif. BMC Struct Biol 11:43
PubMed
CrossRef
CAS
Google Scholar
Ficicioglu C, Coughlin CR 2nd, Bennett MJ, Yudkoff M (2010) Very long-chain acyl-CoA dehydrogenase deficiency in a patient with normal newborn screening by tandem mass spectrometry. J Pediatr 156(3):492–494
PubMed
CrossRef
CAS
Google Scholar
Gallant NM, Leydiker K, Tang H et al (2012) Biochemical, molecular, and clinical characteristics of children with short chain acyl-CoA dehydrogenase deficiency detected by newborn screening in California. Mol Genet Metab 106(1):55–61
PubMed
CrossRef
CAS
Google Scholar
Gregersen N, Andresen BS, Corydon MJ et al (2001) Mutation analysis in mitochondrial fatty acid oxidation defects: exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum Mutat 18(3):169–189
PubMed
CrossRef
CAS
Google Scholar
Gregersen N, Andresen BS, Pedersen CB, Olsen RK, Corydon TJ, Bross P (2008) Mitochondrial fatty acid oxidation defects– remaining challenges. J Inherit Metab Dis 31(5):643–657
PubMed
CrossRef
CAS
Google Scholar
Han LS, Ye J, Qiu WJ, Gao XL, Wang Y, Gu XF (2007) Selective screening for inborn errors of metabolism on clinical patients using tandem mass spectrometry in China: a four-year report. J Inherit Metab Dis 30(4):507–514
PubMed
CrossRef
CAS
Google Scholar
Huang HP, Chu KL, Chien YH et al (2006) Tandem mass neonatal screening in Taiwan–report from one center. J Formos Med Assoc 105(11):882–886
PubMed
CrossRef
CAS
Google Scholar
Illsinger S, Lucke T, Peter M et al (2008) Carnitine-palmitoyltransferase 2 deficiency: novel mutations and relevance of newborn screening. Am J Med Genet A 146A(22):2925–2928
PubMed
CrossRef
CAS
Google Scholar
Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA (2004) L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol 287(2):C263–C269
PubMed
CrossRef
CAS
Google Scholar
Lan MY, Fu MH, Liu YF et al (2010) High frequency of ETFDH c.250G>A mutation in Taiwanese patients with late-onset lipid storage myopathy. Clin Genet 78(6):565–569
PubMed
CrossRef
CAS
Google Scholar
Lee NC, Tang NL, Chien YH et al (2010) Diagnoses of newborns and mothers with carnitine uptake defects through newborn screening. Mol Genet Metab 100(1):46–50
PubMed
CrossRef
CAS
Google Scholar
Liang WC, Ohkuma A, Hayashi YK et al (2009) ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 19(3):212–216
PubMed
CrossRef
Google Scholar
Lindner M, Hoffmann GF, Matern D (2010) Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J Inherit Metab Dis 33(5):521–526
PubMed
CrossRef
CAS
Google Scholar
Lindner M, Gramer G, Haege G et al (2011) Efficacy and outcome of expanded newborn screening for metabolic diseases–report of 10 years from South-West Germany. Orphanet J Rare Dis 6:44
PubMed
CrossRef
Google Scholar
Marquardt G, Currier R, McHugh DM et al (2012) Enhanced interpretation of newborn screening results without analyte cutoff values. Genet Med 14(7):648–655
PubMed
CrossRef
Google Scholar
McGoey RR, Marble M (2011) Positive newborn screen in a normal infant of a mother with asymptomatic very long-chain Acyl-CoA dehydrogenase deficiency. J Pediatr 158(6):1031–1032
PubMed
CrossRef
Google Scholar
Millington DS, Kodo N, Norwood DL, Roe CR (1990) Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis 13(3):321–324
PubMed
CrossRef
CAS
Google Scholar
Niu DM, Chien YH, Chiang CC et al (2010) Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. J Inherit Metab Dis 33(Suppl 2):S295–S305
PubMed
CrossRef
Google Scholar
Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S (2004) Clinical effectiveness and cost-effectiveness of neonatal screening for inborn errors of metabolism using tandem mass spectrometry: a systematic review. Health Technol Assess 8(12): iii, 1–121
Google Scholar
Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease New York. McGraw-Hill, New York, pp 2297–2326
Google Scholar
Rose EC, di San Filippo CA, Ndukwe Erlingsson UC, Ardon O, Pasquali M, Longo N (2012) Genotype-phenotype correlation in primary carnitine deficiency. Hum Mutat 33(1):118–123
PubMed
CrossRef
CAS
Google Scholar
Sahai I, Bailey JC, Eaton RB, Zytkovicz T, Harris DJ (2011) A near-miss: very long chain acyl-CoA dehydrogenase deficiency with normal primary markers in the initial well-timed newborn screening specimen. J Pediatr 158(1):172, author reply 172–173
PubMed
Google Scholar
Solis JO, Singh RH (2002) Management of fatty acid oxidation disorders: a survey of current treatment strategies. J Am Diet Assoc 102(12):1800–1803
PubMed
CrossRef
Google Scholar
Spiekerkoetter U (2010) Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J Inherit Metab Dis 33(5):527–532
PubMed
CrossRef
CAS
Google Scholar
Spiekerkoetter U, Lindner M, Santer R et al (2009a) Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis 32(4):488–497
PubMed
CrossRef
CAS
Google Scholar
Spiekerkoetter U, Lindner M, Santer R et al (2009b) Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 32(4):498–505
PubMed
CrossRef
CAS
Google Scholar
Spiekerkoetter U, Bastin J, Gillingham M, Morris A, Wijburg F, Wilcken B (2010a) Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 33(5):555–561
PubMed
CrossRef
CAS
Google Scholar
Spiekerkoetter U, Haussmann U, Mueller M et al (2010b) Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: the value of second-tier enzyme testing. J Pediatr 157(4):668–673
PubMed
CrossRef
CAS
Google Scholar
Tang NL, Hwu WL, Chan RT, Law LK, Fung LM, Zhang WM (2002) A founder mutation (R254X) of SLC22A5 (OCTN2) in Chinese primary carnitine deficiency patients. Hum Mutat 20(3):232
PubMed
CrossRef
Google Scholar
van Adel BA, Tarnopolsky MA (2009) Metabolic myopathies: update 2009. J Clin Neuromuscul Dis 10(3):97–121
PubMed
CrossRef
Google Scholar
Wanders RJ, Vreken P, den Boer ME, Wijburg FA, van Gennip AH, Ijlst L (1999) Disorders of mitochondrial fatty acyl-CoA beta-oxidation. J Inherit Metab Dis 22(4):442–487
PubMed
CrossRef
CAS
Google Scholar
Wang ZQ, Chen XJ, Murong SX, Wang N, Wu ZY (2011) Molecular analysis of 51 unrelated pedigrees with late-onset multiple acyl-CoA dehydrogenation deficiency (MADD) in southern China confirmed the most common ETFDH mutation and high carrier frequency of c.250G>A. J Mol Med (Berl) 89(6): 569–576
CrossRef
CAS
Google Scholar
Wang L-Y, Chen N-I, Chen P-W et al (2013) Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests. BMC Med Genet 14:24
PubMed
CrossRef
CAS
Google Scholar
Wilcken B, Wiley V, Sim KG, Carpenter K (2001) Carnitine transporter defect diagnosed by newborn screening with electrospray tandem mass spectrometry. J Pediatr 138(4):581–584
PubMed
CrossRef
CAS
Google Scholar
Wilcken B, Wiley V, Hammond J, Carpenter K (2003) Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 348(23):2304–2312
PubMed
CrossRef
CAS
Google Scholar
Zytkovicz TH, Fitzgerald EF, Marsden D et al (2001) Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. Clin Chem 47(11):1945–1955
PubMed
CAS
Google Scholar