Advertisement

A Novel Double Mutation in the ABCD1 Gene in a Patient with X-linked Adrenoleukodystrophy: Analysis of the Stability and Function of the Mutant ABCD1 Protein

  • Masashi Morita
  • Junpei Kobayashi
  • Kozue Yamazaki
  • Kosuke Kawaguchi
  • Ayako Honda
  • Kenji Sugai
  • Nobuyuki Shimozawa
  • Reiji Koide
  • Tsuneo ImanakaEmail author
Research Report
Part of the JIMD Reports book series (JIMD, volume 10)

Abstract

We diagnosed an adrenomyeloneuropathy (AMN) patient with a double novel missense mutation, c.284C>A (p.A95D) and c.290A>T (p.H97L) in a single ABCD1 allele. In skin fibroblasts from the patient, no ABCD1 protein was detected by immunoblot analysis, and the C24:0 β-oxidation activity was decreased to a level at which the ABCD1 protein was absent. To determine the responsible gene mutation in the patient, we constructed three kinds of mutated ABCD1 gene expression vectors (c.284C>A, c.290A>T or c.284C>A/c.290A>T) and transfected them into CHO cells stably expressing GFP-SKL (CHO/GFP-SKL cells) or CADDS fibroblasts lacking the ABCD1 gene. ABCD1 (p.H97L) displayed the correct peroxisomal localization in CHO/GFP-SKL cells, but ABCD1 (p.A95D) and ABCD1 (p.A95D/p.H97L) were diffuse in the cytosol. Furthermore, ABCD1 (p.H97L) was detected by immunoblot analysis and restored the C24:0 β-oxidation activity in the CADDS fibroblasts, as the wild type ABCD1 did. On the other hand, ABCD1 (p.A95D) and ABCD1 (p.A95D/p.H97L) were not detected and the C24:0 β-oxidation activity was not restored. These results clearly show that c.284C>A is the responsible gene mutation, whereas c.290A>T is a novel polymorphism.

Keywords

Human Skin Fibroblast Posterior Tibial Nerve Peroxisomal Membrane Lignoceric Acid Posterior Tibial Nerve Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported in part by a Grant-in-Aid for Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan, and for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (20590054, 22590060, 23590072). Pacific Edit reviewed the manuscript prior to submission.

References

  1. Bezman L, Moser AB, Raymond GV et al (2001) Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann Neurol 49:512–517PubMedCrossRefGoogle Scholar
  2. Boehm CD, Cutting GR, Lachtermacher MB, Moser HW, Chong SS (1999) Accurate DNA-based diagnostic and carrier testing for X-linked adrenoleukodystrophy. Mol Genet Metab 66:128–136PubMedCrossRefGoogle Scholar
  3. Corzo D, Gibson W, Johnson K et al (2002) Contiguous deletion of the X-linked adrenoleukodystrophy gene (ABCD1) and DXS1357E: a novel neonatal phenotype similar to peroxisomal biogenesis disorders. Am J Hum Genet 70:1520–1531PubMedCrossRefGoogle Scholar
  4. Dubois-Dalcq M, Feigenbaum V, Aubourg P (1999) The neurobiology of X-linked adrenoleukodystrophy, a demyelinating peroxisomal disorder. Trends Neurosci 22:4–12PubMedCrossRefGoogle Scholar
  5. Dvorakova L, Storkanova G, Unterrainer G et al (2001) Eight novel ABCD1 gene mutations and three polymorphisms in patients with X-linked adrenoleukodystrophy: The first polymorphism causing an amino acid exchange. Hum Mutat 18:52–60PubMedCrossRefGoogle Scholar
  6. Guimaraes CP, Lemos M, Sa-Miranda C, Azevedo JE (2002) Molecular characterization of 21 X-ALD Portuguese families: identification of eight novel mutations in the ABCD1 gene. Mol Genet Metab 76:62–67PubMedCrossRefGoogle Scholar
  7. Halbach A, Lorenzen S, Landgraf C, Volkmer-Engert R, Erdmann R, Rottensteiner H (2005) Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast.PMP targeting is evolutionarily conserved. J Biol Chem 280:21176–21182PubMedCrossRefGoogle Scholar
  8. Imanaka T, Shiina Y, Takano T, Hashimoto T, Osumi T (1996) Insertion of the 70-kDa peroxisomal membrane protein into peroxisomal membranes in vivo and in vitro. J Biol Chem 271:3706–3713PubMedCrossRefGoogle Scholar
  9. Kemp S, Pujol A, Waterham HR et al (2001) ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum Mutat 18:499–515PubMedCrossRefGoogle Scholar
  10. Kemp S, Theodoulou FL, Wanders RJ et al (2011) Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J pharmacol 164:1753–1766PubMedCrossRefGoogle Scholar
  11. Kurisu M, Morita M, Kashiwayama Y et al (2003) Existence of catalase-less peroxisomes in Sf21 insect cells. Biochem Biophys Res Commun 306:169–176PubMedCrossRefGoogle Scholar
  12. Landgraf P, Mayerhofer PU, Polanetz R, Roscher AA, Holzinger A (2003) Targeting of the human adrenoleukodystrophy protein to the peroxisomal membrane by an internal region containing a highly conserved motif. Eur J Cell Biol 82:401–410PubMedCrossRefGoogle Scholar
  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  14. Migeon BR, Moser HW, Moser AB, Axelman J, Sillence D, Norum RA (1981) Adrenoleukodystrophy: evidence for X linkage, inactivation, and selection favoring the mutant allele in heterozygous cells. Proc Nati Acad Sci U S A 78:5066–5070CrossRefGoogle Scholar
  15. Morita M, Imanaka T (2012) Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta 1822:1387–1396PubMedCrossRefGoogle Scholar
  16. Moser HW, Fatemi A, Zackowski K et al (2004) Evaluation of therapy of X-linked adrenoleukodystrophy. Neurochem Res 29:1003–1016PubMedCrossRefGoogle Scholar
  17. Moser HW, Mahmood A, Raymond GV (2007) X-linked adrenoleukodystrophy. Nat Clin Pract Neurol 3:140–151PubMedCrossRefGoogle Scholar
  18. Mosser J, Douar AM, Sarde CO et al (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361:726–730PubMedCrossRefGoogle Scholar
  19. Smith KD, Kemp S, Braiterman LT et al (1999) X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem Res 24:521–535PubMedCrossRefGoogle Scholar
  20. Suzuki Y, Takemoto Y, Shimozawa N et al (2005) Natural history of X-linked adrenoleukodystrophy in Japan. Brain Dev 27:353–357PubMedCrossRefGoogle Scholar
  21. Takahashi N, Morita M, Maeda T et al (2007) Adrenoleukodystrophy: subcellular localization and degradation of adrenoleukodystrophy protein (ALDP/ABCD1) with naturally occurring missense mutations. J Neurochem 101:1632–1643PubMedCrossRefGoogle Scholar
  22. Takemoto Y, Suzuki Y, Horibe R, Shimozawa N, Wanders RJ, Kondo N (2003) Gas chromatography/mass spectrometry analysis of very long chain fatty acids, docosahexaenoic acid, phytanic acid and plasmalogen for the screening of peroxisomal disorders. Brain Dev 25:481–487PubMedCrossRefGoogle Scholar
  23. Takemoto Y, Suzuki Y, Tamakoshi A et al (2002) Epidemiology of X-linked adrenoleukodystrophy in Japan. J Hum Genet 47:590–593PubMedCrossRefGoogle Scholar
  24. van Roermund CW, Visser WF, Ijlst L et al (2008) The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 22:4201–4208PubMedCrossRefGoogle Scholar
  25. van Roermund CW, Visser WF, Ijlst L, Waterham HR, Wanders RJ (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation. Biochim Biophys Acta 1811:148–152PubMedCrossRefGoogle Scholar
  26. Watkins PA, Ferrell EV Jr, Pedersen JI, Hoefler G (1991) Peroxisomal fatty acid β-oxidation in HepG2 cells. Arch Biochem Biophys 289:329–336PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Masashi Morita
    • 1
  • Junpei Kobayashi
    • 2
  • Kozue Yamazaki
    • 1
  • Kosuke Kawaguchi
    • 1
  • Ayako Honda
    • 3
  • Kenji Sugai
    • 4
  • Nobuyuki Shimozawa
    • 3
  • Reiji Koide
    • 2
  • Tsuneo Imanaka
    • 1
    Email author
  1. 1.Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
  2. 2.Department of NeurologyTokyo Metropolitan Neurological HospitalFuchuJapan
  3. 3.Division of Genomics Research, Life Science Research CenterGifu UniversityGifuJapan
  4. 4.Department of Child NeurologyNational Center of Neurology and PsychiatryTokyoJapan

Personalised recommendations