Skip to main content

Cardiac Natriuretic Hormone System as Target for Cardiovascular Therapy

  • Chapter
Natriuretic Peptides

Abstract

Heart failure is a life-threatening cardiovascular disease that is increasing in prevalence in North America and Europe [13]. It is a common cause of death and is accompanied by high direct and indirect costs for treatment. The current situation faced by patients and the medical community with regard to this problem is one of high mortality, repeated hospitalizations, and combination therapies. The different classes of pharmacological agents that are currently used for patients suffering from heart failure include angiotensin-converting enzyme (ACE) inhibitors, angiotensin-receptor blockers, aldosterone antagonists, β-blockers, digitalis, diuretics, inotropic agents, nitrates, and vasodilators [13]. While these agents are all important therapeutic tools, the prognosis for patients with heart failure remains poor [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Task Force on Acute Heart Failure of the European Society of Cardiology (2005) Guidelines on the diagnosis and treatment of acute heart failure, pp 1–36

    Google Scholar 

  2. The Task Force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology (2005) Guidelines for the diagnosis and the treatment of chronic heart failure. Updated, pp 1–45

    Google Scholar 

  3. ACC/AHA 2005 guideline update for the diagnosis and treatment of chronic heart failure in the adult (2005) A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure). American College of Cardiology Foundation and the American Heart Association, Inc, pp 1–82

    Google Scholar 

  4. Richards AM, Lainchbury JG, Nicholls MG et al (2002) BNP in hormone-guided treatment of heart failure. Trends Endocrinol Metab 13:151–155

    Article  PubMed  CAS  Google Scholar 

  5. Latini R, Masson S, De Angelis N, Anand I (2002) Role of brain natriuretic peptide in the diagnosis and management of heart failure: current concepts. J Card Fail 8:288–299

    Article  PubMed  CAS  Google Scholar 

  6. Richards M, Troughton RW (2004) NT-proBNP in heart failure: therapy decisions and monitoring. Eur J Heart Fail 6:351–354

    Article  PubMed  CAS  Google Scholar 

  7. Bettencourt P (2004) NT-proBNP and BNP: biomarkers for heart failure management. Eur J Heart Fail 6:359–363

    Article  PubMed  CAS  Google Scholar 

  8. Cowie MR, Mendez GF (2002) BNP and congestive heart failure. Prog Cardiovasc Dis 44:293–321

    Article  PubMed  CAS  Google Scholar 

  9. Clerico A, Iervasi G, Pilo A (2000) Turnover studies on cardiac natriuretic peptides: methodological, pathophysiological and therapeutical considerations. Curr Drug Metab 1:85–105

    Article  PubMed  CAS  Google Scholar 

  10. Clerico A, Recchia FA, Passino C, Emdin M (2005) Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol

    Google Scholar 

  11. Yan RT, White M, Yan AT et al (2005) Randomized Evaluation of Strategies for Left Ventricular Dysfunction (RESOLVD) Investigators. Usefulness of temporal changes in neurohormones as markers of ventricular remodeling and prognosis in patients with left ventricular systolic dysfunction and heart failure receiving either candesartan or enalapril or both. Am J Cardiol 96:698–704

    Article  PubMed  CAS  Google Scholar 

  12. Kasama S, Toyama T, Hatori T et al (2005) Comparative effects of valsartan and enalapril on cardiac sympathetic nerve activity and plasma brain natriuretic peptide in patients with congestive heart failure. Heart 92:625–630

    Article  PubMed  CAS  Google Scholar 

  13. Kasama S, Toyama T, Kumakura H et al (2005) Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril. Eur J Nucl Med Mol Imaging 32:964–971

    Article  PubMed  CAS  Google Scholar 

  14. Yoshizawa A, Yoshikawa T, Nakamura I et al (2004) Brain natriuretic peptide response is heterogeneous during beta-blocker therapy for congestive heart failure. J Card Fail 10:310–315

    Article  PubMed  CAS  Google Scholar 

  15. Frantz RP, Olson LJ, Grill D et al (2005) Carvedilol therapy is associated with a sustained decline in brain natriuretic peptide levels in patients with congestive heart failure. Am Heart J 149:541–547

    Article  PubMed  CAS  Google Scholar 

  16. Takeda Y, Fukutomi T, Suzuki S et al (2004) Effects of carvedilol on plasma B-type natriuretic peptide concentration and symptoms in patients with heart failure and preserved ejection fraction. Am J Cardiol 94:448–453

    Article  PubMed  CAS  Google Scholar 

  17. Konishi H, Nishio S, Tsutamoto T et al (2003) Serum carvedilol concentration and its relation to change in plasma brain natriuretic peptide level in the treatment of heart failure: a preliminary study. Int J Clin Pharmacol Ther 41:578–586

    PubMed  CAS  Google Scholar 

  18. Fung JW, Yu CM, Yip G et al (2003) Effect of beta blockade (carvedilol or metoprolol) on activation of the renin-angiotensin-aldosterone system and natriuretic peptides in chronic heart failure. Am J Cardiol 92:406–410

    Article  PubMed  CAS  Google Scholar 

  19. Hirooka K, Yasumura Y, Ishida Y et al (2001) Comparative left ventricular functional and neurohumoral effects of chronic treatment with carvedilol versus metoprolol in patients with dilated cardiomyopathy. Jpn Circ J 65:931–936

    Article  PubMed  CAS  Google Scholar 

  20. Richards AM, Doughty R, Nicholls MG et al (2001) (Australia-New Zealand Heart Failure Group). Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 37:1781–1787

    Article  PubMed  CAS  Google Scholar 

  21. Van den Meiracker AH, Lameris TW, van de Ven LL, Boomsma F (2003) Increased plasma concentration of natriuretic peptides by selective beta1-blocker bisoprolol. J Cardiovasc Pharmacol 42:462–468

    Article  PubMed  Google Scholar 

  22. Deary AJ, Schumann AL, Murfet H et al (2002) Influence of drugs and gender on the arterial pulse wave and natriuretic peptide secretion in untreated patients with essential hypertension. Clin Sci 103:493–499

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka M, Ishizaka Y, Ishiyama Y et al (1996) Chronic effect of beta-adrenoceptor blockade on plasma levels of brain natriuretic peptide during exercise in essential hypertension. Hypertens Res 19:239–245

    PubMed  CAS  Google Scholar 

  24. Yoshimoto T, Naruse M, Tanabe A et al (1998) Potentiation of natriuretic peptide action by the beta-adrenergic blocker carvedilol in hypertensive rats: a new antihypertensive mechanism. Endocrinology 139:81–88

    Article  PubMed  CAS  Google Scholar 

  25. MacDonald JE, Kennedy N, Struthers AD (2004) Effects of spironolactone on endothelial function, vascular angiotensin converting enzyme activity, and other prognostic markers in patients with mild heart failure already taking optimal treatment. Heart 90:765–770

    Article  PubMed  CAS  Google Scholar 

  26. Rousseau MF, Gurne O, Duprez D et al (2002) Belgian RALES Investigators. Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. J Am Coll Cardiol 40:1596–1601

    Article  PubMed  CAS  Google Scholar 

  27. Tsutamoto T, Wada A, Maeda K et al (2001) Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol 37:1228–1233

    Article  PubMed  CAS  Google Scholar 

  28. Avgeropoulou C, Andreadou I, Markantonis-Kyroudis S et al (2005) The Ca2+-sensitizer levosimendan improves oxidative damage, BNP and pro-inflammatory cytokine levels in patients with advanced decompensated heart failure in comparison to dobutamine. Eur J Heart Fail 7:882–887

    Article  PubMed  CAS  Google Scholar 

  29. Kyrzopoulos S, Adamopoulos S, Parissis JT et al (2005) Levosimendan reduces plasma B-type natriuretic peptide and interleukin 6, and improves central hemodynamics in severe heart failure patients. Int J Cardiol 99:409–413

    Article  PubMed  Google Scholar 

  30. Nakajima K, Onishi K, Dohi K et al (2005) Effects of human atrial natriuretic peptide on cardiac function and hemodynamics in patients with high plasma BNP levels. Int J Cardiol 104:332–337

    Article  PubMed  Google Scholar 

  31. Connelly TP, Francis GS, Williams KJ et al (1994) Interaction of intravenous atrial natriuretic factor with furosemide in patients with heart failure. Am Heart J 127:392–399

    Article  PubMed  CAS  Google Scholar 

  32. Mitrovic V, Seferovic P, Simeunovic D et al (2005) A randomized, double-blind, placebo-controlled phase II study of ularitide in patients with acute decompensated congestive heart failure. J Card Fail 11(6 suppl):S151. Abstract 227

    Google Scholar 

  33. Colucci WS, Elkayam U, Horton DP et al (2000) Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med 343:246–253

    Article  PubMed  CAS  Google Scholar 

  34. Report from the United States Food and Drug Administration Center for drug evaluation and research division of cardio-renal products (1999) Cardiovascular and Renal Drugs Advisory Committee, 87th meeting, January 29 (available on the web site: http://www.fda.gov/ohrms/dockets/ac/99/transcpt/3490t2.rtf)

    Google Scholar 

  35. Silver MA, Maisel A, Yancy CW et al (2004) BNP Consensus Panel 2004: A clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail 10(5 suppl 3):1–30

    CAS  Google Scholar 

  36. Kentsch M, Otter W (1999) Novel neurohormonal modulators in cardiovascular disorders. The therapeutic potential of endopeptidase inhibitors. Drugs R D 1:331–338

    PubMed  CAS  Google Scholar 

  37. Kostis JB, Klapholz M, Delaney C et al (2001) Pharmacodynamics and pharmacokinetics of omapatrilat in heart failure. J Clin Pharmacol 41:1280–1290

    Article  PubMed  CAS  Google Scholar 

  38. Schmitt M, Gunaruwan P, Payne N et al (2004) Effects of exogenous and endogenous natriuretic peptides on forearm vascular function in chronic heart failure. Arterioscler Thromb Vasc Biol 24:911–917

    Article  PubMed  CAS  Google Scholar 

  39. Houben AJ, van der Zander K, de Leeuw PW (2005) Vascular and renal actions of brain natriuretic peptide in man: physiology and pharmacology. Fundam Clin Pharmacol 19:411–419

    Article  PubMed  CAS  Google Scholar 

  40. Koller KJ, Goeddel DV (1992) Molecular biology of the natriuretic peptides and their receptors. Circulation 86:1081–1088

    PubMed  CAS  Google Scholar 

  41. Deutsch A, Frishman WH, Sukenik D et al (1994) Atrial natriuretic peptide and its potential role in pharmacotherapy. J Clin Pharmacol 34:1133–1147

    PubMed  CAS  Google Scholar 

  42. Zeidel ML (2000) Physiological responses to natriuretic hormones. In: Fray JCS, Goodman HM (eds) Handbook of physiology, Section 7, The endocrine system, Volume III: Endocrine regulation of water and electrolyte balance. New York, Oxford University Press, pp 410–435

    Google Scholar 

  43. Abramson BL, Ando S, Notarius CF et al (1999) Effect of atrial natriuretic peptide on muscle sympathetic activity and its reflex control in human heart failure. Circulation 99:1810–1815

    PubMed  CAS  Google Scholar 

  44. Cody RJ, Atlas SA, Laragh JH et al (1986) Atrial natriuretic factor in normal subjects and heart failure patients. J Clin Invest 78:1362–1374

    PubMed  CAS  Google Scholar 

  45. Fifer MA, Molina CR, Quiroz AC et al (1990) Hemodynamic and renal effects of atrial natriuretic peptide in congestive heart failure. Am J Cardiol 65:211–216

    Article  PubMed  CAS  Google Scholar 

  46. Crozier IG, Nicholls MG, Ikram H et al (1986) Haemodynamic effects of atrial peptide infusion in heart failure. Lancet 2:1242–1245

    Article  PubMed  CAS  Google Scholar 

  47. Saito H, Ogihara T, Nakamaru M et al (1987) Hemodynamic, renal, and hormonal responses to alpha-human atrial natriuretic peptide in patients with congestive heart failure. Clin Pharmacol Ther 42:142–147

    Article  PubMed  CAS  Google Scholar 

  48. Molina CR, Fowler MB, McCrory S et al (1988) Hemodynamic, renal and endocrine effects of atrial natriuretic peptide infusion in severe heart failure. J Am Coll Cardiol 12:175–186

    Article  PubMed  CAS  Google Scholar 

  49. Zhou HL, Fiscus RR (1989) Brain natriuretic peptide (BNP) causes endothelium-independent relaxation and elevation of cyclic GMP in rat thoracic aorta. Neuropeptides 14:161–169

    Article  PubMed  CAS  Google Scholar 

  50. Wong SKF, Garbers DL (1992) Receptor guanylyl cyclases. J Clin Invest 90:299–305

    Article  PubMed  CAS  Google Scholar 

  51. Burger AJ et al (2002) Effect of nesiritide (B-type natriuretic peptide) and dobutamine on ventricular arrhythmias in the treatment of patients with acutely decompensated CHF: the PRECEDENT study. Am Heart J 144:1102–1108

    Article  PubMed  CAS  Google Scholar 

  52. Abraham WT, Adams KF, Fonarow GC et al (2005) ADHERE Scientific Advisory Committee and Investigators; ADHERE Study Group. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol 46:57–64

    Article  PubMed  Google Scholar 

  53. Cataliotti A, Boerrigter G, Costello-Boerrigter LC et al (2004) Brain natriuretic peptide enhances renal actions of furosemide and suppresses furosemide-induced aldosterone activation in experimental heart failure. Circulation 109:1680–1685

    Article  PubMed  CAS  Google Scholar 

  54. Yancy CW, Saltzberg MT, Berkowitz RL et al (2004) Safety and feasibility of using serial infusions of nesiritide for heart failure in an outpatient setting (from the FUSION I trial). Am J Cardiol 94:595–601

    Article  PubMed  CAS  Google Scholar 

  55. Peacock WF (2003) Clinical and economic impact of nesiritide. Am J Health Syst Pharm 60(suppl 4):S21–26

    PubMed  Google Scholar 

  56. Publication Committee for the VMAC Investigators (2002) Intravenous nesiritide vs. nitroglycerin for treatment of decompensated heart failure. JAMA 287:1531–1540

    Article  Google Scholar 

  57. Clemens LE, Almirez RG, Baudouin KA et al (1998) Pharmacokinetics and biological actions of subcutaneously administered human brain natriuretic peptide. J Pharmacol Exp Ther 287:67–71

    PubMed  CAS  Google Scholar 

  58. Cataliotti A, Schirger JA, Martin FL et al (2005) Oral human brain natriuretic peptide activates cyclic guanosine 3′,5′-monophosphate and decreases mean arterial pressure. Circulation 112:836–840

    Article  PubMed  CAS  Google Scholar 

  59. Wang W, Ou Y, Shi Y (2004) AlbuBNP, a recombinant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure. Pharm Res 21:2105–2111

    Article  PubMed  CAS  Google Scholar 

  60. Abraham WT, Lowes BD, Ferguson DA et al (1998) Systemic hemodynamic, neurohormonal, and renal effects of a steady-state infusion of human brain natriuretic peptide in patients with hemodynamically decompensated heart failure. J Card Fail 4:37–44

    Article  PubMed  CAS  Google Scholar 

  61. Topol EJ (2005) Nesiritide-not verified. N Engl J Med 353:113–116

    Article  PubMed  Google Scholar 

  62. Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K (2005) Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA 293:1900–1905

    Article  PubMed  CAS  Google Scholar 

  63. Margulies KB, Barclay PL, Burnett JC Jr (1995) The role of neutral endopeptidase in dogs with evolving congestive heart failure. Circulation 91:2036–2042

    PubMed  CAS  Google Scholar 

  64. Graf K, Koehne P, Grafe M et al (1995) Regulation and differential expression of neutral endopeptidases 24.11 in human endothelial cells. Hypertension 26:230–235

    PubMed  CAS  Google Scholar 

  65. Erdos EG, Skidgel RA (1989) Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. Faseb J 3:145–151

    PubMed  CAS  Google Scholar 

  66. Dussaule JC, Stefanski A, Bea ML et al (1993) Characterization of neutral endopeptidase in vascular smooth muscle cells of rabbit renal cortex. Am J Physiol 264:F45–52

    PubMed  CAS  Google Scholar 

  67. Lang CC, Motwani JG, Coutie WJ, Struthers AD (1992) Clearance of brain natriuretic peptide in patients with chronic heart failure: indirect evidence for a neutral endopeptidase mechanism but against an atrial natriuretic peptide clearance receptor mechanism. Clin Sci 82:619–623

    PubMed  CAS  Google Scholar 

  68. Kenny AJ, Bourne A, Ingram J (1993) Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J 291:83–88

    PubMed  CAS  Google Scholar 

  69. Skidgel RA, Engelbrecht S, Johnson AR, Erdos EG (1984) Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5:769–776

    Article  PubMed  CAS  Google Scholar 

  70. Berger Y, Dehmlow H, Blum-Kaelin D et al (2005) Endothelin-converting enzyme-1 inhibition and growth of human glioblastoma cells. J Med Chem 48:483–498

    Article  PubMed  CAS  Google Scholar 

  71. Murphy LJ, Corder R, Mallet AI, Turner AJ (1994) Generation by the phosphoramidon-sensitive peptidases, endopeptidase-24.11 and thermolysin, of endothelin-1 and c-terminal fragment from big endothelin-1. Br J Pharmacol 113:137–142

    PubMed  CAS  Google Scholar 

  72. Ferro CJ, Spratt JC, Haynes WG, Webb DJ (1998) Inhibition of neutral endopeptidase causes vasoconstriction of human resistance vessels in vivo. Circulation 97:2323–2330

    PubMed  CAS  Google Scholar 

  73. Danilewicz JC, Barclay PL, Barnish IT et al (1989) UK-69,578, a novel inhibitor of EC 3.4.24.11 which increases endogenous ANF levels and is natriuretic and diuretic. Biochem Biophys Res Commun 164:58–65

    Article  PubMed  CAS  Google Scholar 

  74. Gros C, Souque A, Schwartz JC et al (1989) Protection of atrial natriuretic factor against degradation. Diuretic and natriuretic responses after in vivo inhibition of enkephalinase (EC 3.4.24.11) by acetorphan. Proc Natl Acad Sci USA 86:7580–7584

    Article  PubMed  CAS  Google Scholar 

  75. Schwartz JC, Gros C, Lecomte JM, Bralet J (1990) Enkephalinase (EC 3.4.24. 11) inhibitors: protection of endogenous ANF against inactivation and potential therapeutic applications. Life Sci 47:1279–1297

    Article  PubMed  CAS  Google Scholar 

  76. Northridge DB, Jardine AG, Alabaster CT et al (1989) Effects of UK 69,578: a novel atriopeptidase inhibitor. Lancet 2:591–593

    Article  PubMed  CAS  Google Scholar 

  77. Richards AM, Wittert G, Espiner EA et al (1991) Prolonged inhibition of endopeptidase 24.11 in normal man: renal, endocrine and haemodynamic effects. J Hypertens 9:955–962

    Article  PubMed  CAS  Google Scholar 

  78. O’Connell JE, Jardine AG, Davies DL et al (1993) Renal and hormonal effects of chronic inhibition of neutral endopeptidase (EC 3.4.24.11) in normal man. Clin Sci 85:19–26

    PubMed  CAS  Google Scholar 

  79. Bevan EG, Connell JM, Doyle J et al (1992) Candoxatril, a neutral endopeptidases inhibitor: efficacy and tolerability in essential hypertension. J Hypertens 10:607–613

    Article  PubMed  CAS  Google Scholar 

  80. Ando S, Rahman MA, Butler GC et al (1995) Comparison of candoxatril and atrial natriuretic factor in healthy men. Effects on hemodynamics, sympathetic activity, heart rate variability, and endothelin. Hypertension 26:1160–1166

    PubMed  CAS  Google Scholar 

  81. Richards AM, Crozier IG, Espiner EA et al (1993) Plasma brain natriuretic peptide and endopeptidases 24.11 inhibition in hypertension. Hypertension 22:231–236

    PubMed  CAS  Google Scholar 

  82. Ogihara T, Rakugi H, Masuo K et al (1994) Antihypertensive effects of the neutral endopeptidase inhibitor SCH 42495 in essential hypertension. Am J Hypertens 7:943–947

    PubMed  CAS  Google Scholar 

  83. Fettner SH, Pai S, Zhu GR et al (1995) Pharmacokinetic-pharmacodynamic (PK-PD) modeling for a new antihypertensive agent (neutral metalloendopeptidase inhibitor SCH 42354) in patients with mild to moderate hypertension. Eur J Clin Pharmacol 48:351–359

    Article  PubMed  CAS  Google Scholar 

  84. Singer DR, Markandu ND, Buckley MG et al (1991) Dietary sodium and inhibition of neutral endopeptidase 24.11 in essential hypertension. Hypertension 18:798–804

    PubMed  CAS  Google Scholar 

  85. Richards AM, Wittert GA, Crozier IG et al (1993) Chronic inhibition of endopeptidases 24.11 in essential hypertension: evidence for enhanced atrial natriuretic peptide and angiotensin II. J Hypertens 11:407–416

    Article  PubMed  CAS  Google Scholar 

  86. Kahn JC, Patey M, Dubois-Rande JL et al (1990) Effect of sinorphan on plasma atrial natriuretic factor in congestive heart failure. Lancet 335:118–119

    Article  PubMed  CAS  Google Scholar 

  87. Good JM, Peters M, Wilkins M et al (1995) Renal response to candoxatrilat in patients with heart failure. J Am Coll Cardiol 25:1273–1281

    Article  PubMed  CAS  Google Scholar 

  88. Trindade PT, Rouleau JL (2001) Vasopeptidase inhibitors: potential role in the treatment of heart failure. Heart Fail Monit 2:2–7

    PubMed  CAS  Google Scholar 

  89. Sagnella GA (2002) Vasopeptidase inhibitors. J Renin Angiotensin Aldosterone Syst 3:90–95

    PubMed  CAS  Google Scholar 

  90. Dawson A, Struthers AD (2002) Vasopeptidase inhibitors in heart failure. J Renin Angiotensin Aldosterone Syst 3:156–159

    PubMed  CAS  Google Scholar 

  91. Floras JS (2002) Vasopeptidase inhibition: a novel approach to cardiovascular therapy. Can J Cardiol 18:177–182

    PubMed  Google Scholar 

  92. Chaitman BR, Ivleva AY, Ujda M et al (2005) Antianginal efficacy of omapatrilat in patients with chronic angina pectoris. Am J Cardiol 95:1283–1289

    Article  PubMed  CAS  Google Scholar 

  93. Packer M, Califf RM, Konstam MA et al (2002) Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 106:920–926

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Emdin, M., Clerico, A. (2006). Cardiac Natriuretic Hormone System as Target for Cardiovascular Therapy. In: Clerico, A., Emdin, M. (eds) Natriuretic Peptides. Springer, Milano. https://doi.org/10.1007/88-470-0498-5_7

Download citation

  • DOI: https://doi.org/10.1007/88-470-0498-5_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0497-9

  • Online ISBN: 978-88-470-0498-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics