Skip to main content

Respiratory Mechanics in Health

  • Chapter
  • 749 Accesses

Abstract

The statics of the respiratory system and its component parts is studied by determining and analysing corresponding volume-pressure (V-P) relationships. These relationships are usually represented as single lines, in spite of the fact that static pressures differ depending on volume, as well as on timing. V-P relationships obtained in subsequent steps from minimal to maximal lung volume and back again appear as loops, referred to as ‘hysteresis loops,’ that are attributed to both viscoelasticity, i.e. a rate-dependent phenomenon, and plasticity, i.e. a rate-independent phenomenon. Indeed, only plasticity is responsible for static hysteresis. Although there is no information concerning pressure related to tissue plasticity in humans, it has been suggested that this pressure component should be very small in the tidal volume range [1]. Moreover, the static pressure across the lung and chest wall varies at different sites because of the effects of gravity and different shapes of these two structures [2], while the static pressure across the respiratory system may become non- uniform under conditions involving airway closure. Nevertheless, for analytical purposes, static V-P relationships will be considered as single functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jonson B, Beydon L, Brauer K et al (1993) Mechanics of respiratory system in healthy anesthetized humans with emphasis on viscoelastic properties. J Appl Physiol 75:132–140

    PubMed  CAS  Google Scholar 

  2. Agostoni E (1972) Mechanics of the pleural space. Physiol Rev 52:57–128

    PubMed  CAS  Google Scholar 

  3. Gattinoni L, Mascheroni D, Basilico E et al (1987) Volume/pressure curve of total respiratory system in paralysed patients: artefacts and correction factors. Intensive Care Med 13:19–23

    Article  PubMed  CAS  Google Scholar 

  4. Woo SW, Berlin D, Hedly-Whyte J (1969) Surfactant function and anesthetic agents. J Appl Physiol 26:571–577

    PubMed  CAS  Google Scholar 

  5. DAngelo E, Tavola M, Milic-Emili J (2000) Volume and time dependence of respiratory system mechanics in normal anaesthetized paralysed humans. Eur Resp J 16:665–672

    Article  CAS  Google Scholar 

  6. Howell JBL, Peckett BW (1957)Studies of the elastic properties of the thorax of supine anaesthetized paralysed human subjects. J Physiol (London) 136:1–19

    PubMed  CAS  Google Scholar 

  7. Hedenstierna G, Lofstrom B, Lundh R (1981) Thoracic gas volume and chest-abdomen dimensions during anesthesia and muscle paralysis. Anesthesiology 55:499–506

    PubMed  CAS  Google Scholar 

  8. Krayer S, Rehder K, Beck KC et al (1987) Quantification of thoracic volumes by three-dimensional imaging. J Appl Physiol 62:591–598

    Article  PubMed  CAS  Google Scholar 

  9. Rehder K, Mallow JE, Fibuch EE et al (1974) Effects of isoflurane anesthesia and muscle paralysis on respiratory mechanics in normal man. Anesthesiology 41:477–485

    Article  PubMed  CAS  Google Scholar 

  10. Westbrook PR, Stubbs SE, Sessler AD et al (1973) Effects of anesthesia and muscle paralysis on respiratory mechanics in normal man. J Appl Physiol 34:81–86

    PubMed  CAS  Google Scholar 

  11. Foster CA, Heaf PJD, Semple SJG (1957) Compliance of the lung in anesthetized paralyzed subjects. J Appl Physiol 11:383–384

    PubMed  CAS  Google Scholar 

  12. Van Lith P, Johnson FN, Sharp JT (1967) Respiratory elastances in relaxed and paralyzed states in normal and abnormal men. J Appl Physiol 23:475–486

    PubMed  Google Scholar 

  13. DAngelo E, Robatto F, Calderini E et al (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70:2602–2610

    CAS  Google Scholar 

  14. Pelosi P, Croci M, Calappi E et al (1995) The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg 80:955–960

    Article  PubMed  CAS  Google Scholar 

  15. DAngelo E (1984) Techniques for studying the mechanics of the pleural space. In: Otis AB (ed) Techniques in life science, part II, vol. P415. Elsevier, Amsterdam, pp 1–32

    Google Scholar 

  16. Milic-Emili J (1984) Measurements of pressures in respiratory physiology. In: Otis AB (ed) Techniques in Life Science, part II, vol. P412. Elsevier, Amsterdam, pp 1–22(7A)

    Google Scholar 

  17. DAngelo E, Calderini E, Tavola M et al (1992) Effect of PEEP on respiratory mechanics in anesthetized paralyzed humans. J Appl Physiol 73:1736–1742

    CAS  Google Scholar 

  18. Wade OL (1954) Movements of the thoracic cage and diaphragm in respiration. J Physiol (London) 124:193–212

    PubMed  CAS  Google Scholar 

  19. Agostoni E, Mognoni P, Torri G, Saracino F (1965) Relation between changes of rib cage circumference and lung volume. J Appl Physiol 20:1179–1186

    Google Scholar 

  20. Krayer S, Rehder K, Vettermann J et al (1989) Position and motion of the human diaphragm during anesthesia-paralysis. Anesthesiology 70:891–898

    Article  PubMed  CAS  Google Scholar 

  21. Grimby G, Hedenstierna G, Lofstrom B (1975) Chest wall mechanics during artificial ventilation. J Appl Physiol 38:576–580

    PubMed  CAS  Google Scholar 

  22. Jones JG, Faithfull D, Jordan C, Minty B (1979) Rib cage movement during halothane anaethesia in man. Br J Anaesth 51:399–407

    Article  PubMed  CAS  Google Scholar 

  23. Vellody VP, Nassery M, Dius WS, Sharp JT (1978) Effects of body position change on thoracoabdominal motion. J Appl Physiol 45:581–589

    PubMed  CAS  Google Scholar 

  24. Rehder K, Marsh M (1986) Respiratory mechanics during anesthesia and mechanical ventilation. In: Macklem PT, Mead J (eds) Handbook of Physiology. The Respiratory System, Mechanics of Breathing, Section 3, vol III, chp 43. American Physiological Society, Bethesda, pp 737–752

    Google Scholar 

  25. Hedenstierna C, Bindslev L, Santesson J, Norlander DP (1981) Airway closure in each lung of anesthetized human subjects. J Appl Physiol 50:55–64

    PubMed  CAS  Google Scholar 

  26. Rehder K, Sittipong R, Sessler AD (1972) The effects of thiopental-meperidine anesthesia with succinylcholine paralysis on functional residual capacity and dynamic lung compliance in normal sitting man. Anesthesiology 37:395–398

    Article  PubMed  CAS  Google Scholar 

  27. Wright PE, Marini JJ, Bernard GR (1989) In vitro versus in vivo comparison of endotracheal tube airflow resistance. Am Rev Respir Dis 140:10–16

    PubMed  CAS  Google Scholar 

  28. Druz WS, Sharp JT (1981) Activity of respiratory muscles in upright and recumbent humans. J Appl Physiol 51:1552–1561

    PubMed  CAS  Google Scholar 

  29. Muller N, Volgyesi G, Becker L et al (1979) Diaphragmatic muscle tone. J Appl Physiol 47:279–284

    PubMed  CAS  Google Scholar 

  30. Drummond GB, Allan PL, Logan MR (1986) Changes in diaphragmatic position in association with the induction of anaesthesia. Br J Anaesth 58:1246–1251

    Article  PubMed  CAS  Google Scholar 

  31. Hedenstierna G, Strandberg A, Brismar B et al (1985) Functional residual capacity, thoracoabdominal dimensions, and central blood volume during general anesthesia with muscle paralysis and mechanical ventilation. Anesthesiology 62:247–254

    Article  PubMed  CAS  Google Scholar 

  32. Freund F, Roos A, Dodd RB (1964) Expiratory activity of the abdominal muscles in man during general anesthesia. J Appl Physiol 19:693–697

    PubMed  CAS  Google Scholar 

  33. Kimball WR, Loring SH, Basta SJ et al (1985) Effects of paralysis with pancuronium on chest wall statics in awake humans. J Appl Physiol 58:1638–1645

    PubMed  CAS  Google Scholar 

  34. Gold ML, Helrich M (1965) Pulmonary compliance during anesthesia. Anesthesiology 26:281–288

    Article  PubMed  CAS  Google Scholar 

  35. Hedenstierna G, McCarthy G (1975) Mechanics of breathing, gas distribution and functional residual capacity at different frequencies of respiration during spontaneous and artificial ventilation. Br J Anaesth 47:706–712

    Article  PubMed  CAS  Google Scholar 

  36. Wu N, Miller WF, Luhn NR (1956) Studies of breathing in anesthesia. Anesthesiology 17:696–707

    Article  PubMed  Google Scholar 

  37. Brismar B, Hedenstierna G, Lundquist H et al (1985) Pulmonary densities during anesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 62:422–428

    Article  PubMed  CAS  Google Scholar 

  38. Duggan CJ, Castle WD, Berend N (1990) Effects of continuous positive airway pressure breathing on lung volume and distensibility. J Appl Physiol 68:1121–1126

    PubMed  CAS  Google Scholar 

  39. Goldberg HS, Mitzner W, Adams K et al (1975) Effect of intrathoracic pressure on pressure-volume characteristics of the lung in man. J Appl Physiol 38:411–417

    PubMed  CAS  Google Scholar 

  40. Hillman DR, Finucane KE (1983) The effect of hyperinflation on lung elasticity in healthy subjects. Respir Physiol 54:295–305

    Article  PubMed  CAS  Google Scholar 

  41. Young SL, Tierney DF, Clements JA (1970) Mechanism of compliance change in excised rat lungs at low transpulmonary pressure. J Appl Physiol 29:780–785

    PubMed  CAS  Google Scholar 

  42. Agostoni E, Hyatt R (1986) Static behavior of the respiratory system. In: Macklem PT, Mead J (eds) Handbook of Physiology. The Respiratory System, Mechanics of Breathing, Section 3, vol. III, chp 9. American Physiological Society, Bethesda, pp 113–130

    Google Scholar 

  43. Rehder K, Knopp TJ, Sessler AD (1978) Regional intrapulmonary gas distribution in awake and anesthetized-paralyzed prone man. J Appl Physiol 45 528–535

    PubMed  CAS  Google Scholar 

  44. Rohrer F (1915) Der Stromungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmassigen Verzweigung des Bronchialsystems auf den Atmungsverlaud verschiedenen Lungenbezirken. Arch Gesamte Physiol Mens Tiere 162:225–299

    Article  Google Scholar 

  45. Rohrer F (1925) Physiologie der Atembewegung. In: Bethe ATJ, von Bergmann G, Embden G, Ellinger A (eds) Handbuch der normalen und pathologischen Physiologie vol 2. Springer-Verlag, Berlin, pp 70–127

    Google Scholar 

  46. Briscoe WA, DuBois AB (1958) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 37:1279–1285

    PubMed  CAS  Google Scholar 

  47. Mead J, Agostoni E (1964) Dynamics of breathing. In: Fenn OW, Rahn H (eds) Handbook of Physiology. Respiration, vol 1. American Physiological Society, Washington DC, pp 411–427

    Google Scholar 

  48. D’Angelo E, Salvo Calderini I, Tavola M (2001) The effects of CO2 on respiratory mechanics in normal anesthetized paralyzed humans. Anesthesiology 94:604–610

    Article  PubMed  CAS  Google Scholar 

  49. Mead J, Whittenberger JL (1954) Evaluation of airway interruption technique as a method for measuring pulmonary air-flow resistance. J Appl Physiol 6:408–416

    PubMed  CAS  Google Scholar 

  50. D’Angelo E, Calderini E, Torri G et al (1989) Respiratory mechanics in anesthetized-paralyzed humans: effects of flow, volume and time. J Appl Physiol 67:2556–2564

    PubMed  CAS  Google Scholar 

  51. D’Angelo E, Prandi E, Tavola M et al (1994) Chest wall interrupter resistance in anesthetized paralyzed humans. J Appl Physiol 77:883–887

    PubMed  CAS  Google Scholar 

  52. Liistro GD, Stanescu D, Rodenstein D, Veriter C (1989) Reassessment of the interruption technique for measuring flow resistance in humans. J Appl Physiol 67:933–937

    PubMed  CAS  Google Scholar 

  53. D’Angelo E, Calderini E, Robatto FM et al (1997) Lung and chest wall mechanics in patients with acquired immunodeficiency syndrome and severe Pneumocystis carinii pneumonia. Eur Respir J 10:2343–2350

    Article  PubMed  CAS  Google Scholar 

  54. Bates JHT, Ludwig MS, Sly PD et al (1988) Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol 65:408–414

    PubMed  CAS  Google Scholar 

  55. Saldiva PHN, Zin WA, Santos RLB et al (1992) Alveolar pressure measurement in open-chest rats. J Appl Physiol 72:302–306

    PubMed  CAS  Google Scholar 

  56. D’Angelo E, Rocca E, Milic-Emili J (1999) A model analysis of the effects of different inspiratory flow patterns on inspiratory work during mechanical ventilation. Eur Respir Mon 4:279–295

    Google Scholar 

  57. Mount LE (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol (London) 127:157–167

    PubMed  CAS  Google Scholar 

  58. Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic linear viscoelastic model. J Appl Physiol 28:365–372

    PubMed  CAS  Google Scholar 

  59. Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67:2408–2419

    PubMed  CAS  Google Scholar 

  60. Hoppin FG, Stothert JC, Greaves IA et al (1986) Lung recoil: elastic and rheological properties. In: Mead J, Macklem PT (eds) Handbook of physiology. The respiratory system, mechanics of breathing, vol 3. American Physiological Society, Bethesda MD, 195–216

    Google Scholar 

  61. Stamenovic D, Glass GM, Barnas GM, Fredberg JJ (1990) Viscoplasticity of respiratory tissues. J Appl Physiol 69:973–988

    PubMed  CAS  Google Scholar 

  62. Sharp JT, Johnson FN, Goldberg NB, Van Lith P (1967) Hysteresis and stress adaptation in the human respiratory system. J Appl Physiol 23:487–497

    PubMed  CAS  Google Scholar 

  63. Marik PE, Krikorian J (1997) Pressure-controlled ventilation in ARDS: a practical approach. Chest 112:1102–06

    PubMed  CAS  Google Scholar 

  64. Kacmarek RM, Hess DR (1993) Airway pressure, flow and volume waveforms, and lung mechanics during mechanical ventilation. In: Kacmarek RM, Hess D, Stoller JK (eds) Monitoring in respiratory care. Mosby, London, pp 497–543

    Google Scholar 

  65. Lauzon AM, Bates JHT (1991) Estimation of time-varying respiratory mechanical parameters by recursive least squares. J Appl Physiol 71:1159–1165

    PubMed  CAS  Google Scholar 

  66. Iotti GA, Braschi A, Brunner JX et al (1995) Respiratory mechanics by least square fitting in mechanically ventilated patients: applications during paralysis and during pressure support ventilation. Intensive Care Med 21:406–413

    Article  PubMed  CAS  Google Scholar 

  67. Milic-Emili J, Gottfried SB, Rossi A (1987) Non-invasive measurement of respiratory mechanics in ICU patients. Int J Clin Monit Comput 4:11–20

    Article  PubMed  CAS  Google Scholar 

  68. Ranieri VM, Giuliani R, Fiore T et al (1994) Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: ‘occlusion’ versus ‘onstant flow’ technique. Am J Respir Crit Care Med 149:19–2

    PubMed  CAS  Google Scholar 

  69. Ranieri VM, Zhang H, Mascia L et al (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

D’Angelo, E., Lucangelo, A. (2006). Respiratory Mechanics in Health. In: Gullo, A., Berlot, G. (eds) Perioperative and Critical Care Medicine. Springer, Milano. https://doi.org/10.1007/88-470-0417-9_2

Download citation

  • DOI: https://doi.org/10.1007/88-470-0417-9_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0416-0

  • Online ISBN: 978-88-470-0417-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics