Skip to main content

MDCT Perfusion in Acute Stroke

  • Chapter
MDCT:A Practical Approach

Abstract

Acute cerebrovascular stroke ranks amongst the foremost causes of morbidity and mortality in the world [1]. In acute settings, the rapid evaluation of acute stroke is invaluable due to the ability to treat patients with thrombolytics. In addition to anatomic information about the acute stroke, state-of-the-art radiologic techniques can also provide critical information about capillary-level hemodynamics and the brain parenchyma. Computed tomography perfusion (CTP) provides this information and can help in understanding the pathophysiology of stroke [25]. CTP helps the physician to identify critically ischemic or irreversibly infarcted tissue (“core”) and to identify severely ischemic but potentially salvageable tissue (“penumbra”). This information can guide triage and management in acute stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heart disease and stroke statistics — 2004 update (2003) American Heart Association, 2003, Dallas

    Google Scholar 

  2. Lev MH, Farkas J, Rodriguez VR et al (2001) CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 25(4):520–528

    Article  PubMed  CAS  Google Scholar 

  3. Lev MH, Gonzalez RG (2002) CT Angiography and CT Perfusion Imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic Press, San Diego, pp 427–484

    Google Scholar 

  4. Wildermuth S, Knauth M, Brandt T et al (1998) Role of CT angiography in patient selection for thrombolytic therapy in acute hemispheric stroke. Stroke 29(5):935–938

    PubMed  CAS  Google Scholar 

  5. Knauth M, vonKummer R, Jansen O et al (1997) Potential of CT angiography in acute ischemic stroke. AJNR Am J Neuroradiol 18(6):1001–1010

    PubMed  CAS  Google Scholar 

  6. Albers GW (1999) Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke 30(10):2230–2237

    PubMed  CAS  Google Scholar 

  7. Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 355(9216):1670–1674

    Article  PubMed  CAS  Google Scholar 

  8. Broderick JP, Lu M, Kothari R et al (2000) Finding the most powerful measures of the effectiveness of tissue plasminogen activator in the NINDS tPA stroke trial. Stroke 31(10):2335–2341

    PubMed  CAS  Google Scholar 

  9. Schellinger PD, Jansen O, Fiebach JB et al (2000) Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI. Stroke 31(6):1318–1328

    PubMed  CAS  Google Scholar 

  10. Tong D, Yenari M, Albers G et al (1998) Correlation of perfusion-and diffusion-weighted MRI with NIHSS Score in acute (<6.5 hour) ischemic stroke. Neurology 50(4):864–870

    PubMed  CAS  Google Scholar 

  11. Berzin T, Lev M, Goodman D et al (2001) CT perfusion imaging versus MR diffusion-weighted imaging: prediction of final infarct size in hyperacute stroke [abstract]. Stroke 32:317

    Google Scholar 

  12. Warach S (2001) New imaging strategies for patient selection for thrombolytic and neuroprotective therapies. Neurology 57[Suppl 2]:48–52

    Google Scholar 

  13. Von Kummer R, Holle R, Grzyska U, Hofmann E et al (1996) Interobserver agreement in assessing early CT signs of middle cerebral artery infarction. AJNR Am J Neuroradiol 17:1743–1748

    Google Scholar 

  14. Grotta JC, Chiu D, Lu M et al (1999) Agreement and variability in the interpretation of early CT changes in stroke patients qualifying for intravenous rtPA therapy. Stroke 30(8):1528–1533

    PubMed  CAS  Google Scholar 

  15. Von Kummer R, Allen KL, Holle R et al (1997) Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology 205(2):327–333

    Google Scholar 

  16. Von Kummer R (2003) Early major ischemic changes on computed tomography should preclude use of tissue plasminogen activator. Stroke 34(3):820–821

    Article  Google Scholar 

  17. Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 137:679–686

    PubMed  CAS  Google Scholar 

  18. Hunter GJ, Hamberg LM, Ponzo JA et al (1998) Assessment of cerebral perfusion and arterial anatomy in hyperacute stroke with three-dimensional functional CT: Early clinical results. AJNR Am J Neuroradiol 19:29–37

    PubMed  CAS  Google Scholar 

  19. Hamberg LM, Hunter GJ, Kierstead D et al (1996) Measurement of cerebral blood volume with subtraction three-dimensional functional CT. AJNR Am J Neuroradiol 17(10):1861–1869

    PubMed  CAS  Google Scholar 

  20. Bae KT, Tran HQ, Heiken JP (2000) Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology 216(3):872–880

    PubMed  CAS  Google Scholar 

  21. Fleischmann D, Rubin GD, Bankier AA, Hittmair K (2000) Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214(2):363–371

    PubMed  CAS  Google Scholar 

  22. Wintermark M, Reichhart M, Thiran JP et al (2002) Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51(4):417–432

    Article  PubMed  Google Scholar 

  23. Aksoy FG, Lev MH (2000) Dynamic contrast-enhanced brain perfusion imaging: technique and clinical applications. Semin Ultrasound CT MR 21(6):462–477

    Article  PubMed  CAS  Google Scholar 

  24. Eastwood JD, Lev MH, Provenzale JM (2003) Perfusion CT with iodinated contrast material. AJR Am J Roentgenol 180(1):3–12

    PubMed  Google Scholar 

  25. Lev MH, Kulke SF, Weisskoff RM et al (1997) Dose dependence of signal to noise ratio in functional MRI of cerebral blood volume mapping with sprodiamide. J Magn Reson Imaging 7:523–527

    PubMed  CAS  Google Scholar 

  26. Coutts SB, Simon JE, Tomanek AI et al (2003) Reliability of assessing percentage of diffusion-perfusion mismatch. Stroke 34(7):1681–1683

    Article  PubMed  Google Scholar 

  27. Roccatagliata L, Lev MH, Mehta N et al (2003) Estimating the size of ischemic regions on CT perfusion maps in acute stroke: is freehand visual segmentation sufficient? In: Proceedings of the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America, 2003, Chicago, p. 1292

    Google Scholar 

  28. Mullins ME, Lev MH, Bove P et al (2004) Comparison of image quality between conventional and lowdose nonenhanced head CT. AJNR Am J Neuroradiol 25(4):533–538

    PubMed  Google Scholar 

  29. Villringer A, Rosen BR, Belliveau JW et al (1988) Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    Article  PubMed  CAS  Google Scholar 

  30. Meier P, Zieler K (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  31. Roberts G, Larson K (1973) The interpretation of mean transit time measurements for multi-phase tissue systems. J Theor Biol 39:447–475

    Article  PubMed  CAS  Google Scholar 

  32. Cenic A, Nabavi DG, Craen RA et al (1999) Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol 20(1):63–73

    PubMed  CAS  Google Scholar 

  33. Cenic A, Nabavi DG, Craen RA et al (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21(3):462–470

    PubMed  CAS  Google Scholar 

  34. Nabavi DG, Cenic A, Dool J et al (1999) Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr 23(4):506–515

    Article  PubMed  CAS  Google Scholar 

  35. Nabavi DG, Cenic A, Craen RA et al (1999) CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 213(1):141–149

    PubMed  CAS  Google Scholar 

  36. Nabavi DG, Cenic A, Henderson S et al (2001) Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke 32(1):175–183

    PubMed  CAS  Google Scholar 

  37. Ostergaard L, Weisskoff RM, Chesler DA et al (1996) High resolution of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical Approach ad Statistical Analysis. Magnetic Resonance Imaging in Medicine 36(5):715–725

    Article  CAS  Google Scholar 

  38. Ostergaard L, Chesler DA, Weisskoff RM et al (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19(6):690–699

    Article  PubMed  CAS  Google Scholar 

  39. Wintermark M, Thiran JP, Maeder P et al (2001) Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol 22(5):905–914

    PubMed  CAS  Google Scholar 

  40. Wirestam R, Andersson L, Ostergaard L et al (2000) Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 43(5):691–700

    Article  PubMed  CAS  Google Scholar 

  41. Wintermark M, Maeder P, Thiran JP (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11(7):1220–1230

    Article  PubMed  CAS  Google Scholar 

  42. Sanelli PC, Lev MH, Eastwood JD et al (2004) The effect of varying user-selected input parameters on quantitative values in CT perfusion maps. Academic Radiology 11(10):1085–1092

    Article  PubMed  Google Scholar 

  43. Hacke W, Albers G, Al-Rawi Y et al (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36(1):66–73

    Article  PubMed  CAS  Google Scholar 

  44. Schellinger PD, Fiebach JB, Hacke W (2003) Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke 34(2):575–583

    Article  PubMed  Google Scholar 

  45. Rother J (2003) Imaging-guided extension of the time window: ready for application in experienced stroke centers? Stroke 34(2):575–583

    Article  PubMed  Google Scholar 

  46. Rother J, Schellinger PD, Gass A et al (2002) Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke <6 hours. Stroke 33(10):2438–2445

    Article  PubMed  CAS  Google Scholar 

  47. Parsons MW, Barber PA, Chalk J et al (2002) Diffusion-and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol 51(1):28–37

    Article  PubMed  Google Scholar 

  48. Lev MH, Segal AZ, Farkas J et al (2001) Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke 32(9):2021–2028

    PubMed  CAS  Google Scholar 

  49. Schramm P, Schellinger PD, Fiebach JB et al (2002). Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 33(10):2426–2432

    Article  PubMed  Google Scholar 

  50. Schramm P, Schellinger PD, Klotz E et al (2004) Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke 35:1652–1658

    Article  PubMed  Google Scholar 

  51. Kidwell CS, Saver JL, Mattiello J et al (2000) Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 47(4):462–469

    Article  PubMed  CAS  Google Scholar 

  52. Kidwell CS, Saver JL, Starkman S et al (2002) Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 52(6):698–703

    Article  PubMed  Google Scholar 

  53. Wintermark M, Fischbein NJ, Smith WS et al (2005) Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol 26(1):104–112

    PubMed  Google Scholar 

  54. Bisdas S, Donnerstag F, Ahl B (2004) Comparison of perfusion computed tomography with diffusionweighted magnetic resonance imaging in hyperacute ischemic stroke. J Comput Assist Tomogr 28(6):747–755

    Article  PubMed  Google Scholar 

  55. Warach S (2003) Measurement of the ischemic penumbra with MRI: it’s about time. Stroke 34(10):2533–2534

    Article  PubMed  Google Scholar 

  56. Wu O, Koroshetz WJ, Ostergaard L et al (2001) Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusionweighted MR imaging. Stroke 32(4):933–942

    PubMed  CAS  Google Scholar 

  57. Barber PA, Darby DG, Desmond PM et al (1998) Prediction of stroke outcome with echoplanar perfusion-and diffusion-weighted MRI. Neurology 51(2):418–426

    PubMed  CAS  Google Scholar 

  58. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12(6):723–725

    PubMed  CAS  Google Scholar 

  59. Sorensen AG, Buonanno FS, Gonzalez RG et al (1996) Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199(2):391–401

    PubMed  CAS  Google Scholar 

  60. Sunshine JL, Tarr RW, Lanzieri CF et al (1999) Hyperacute stroke: ultrafast MR imaging to triage patients prior to therapy. Radiology 212:325–332

    PubMed  CAS  Google Scholar 

  61. Schlaug G, Benfield A, Baird AE et al (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53(7):1528–1537

    PubMed  CAS  Google Scholar 

  62. Mehta N, Lev MH, Mullins ME et al (2003) Prediction of final infarct size in acute stroke using cerebral blood flow/cerebral blood volume mismatch: added value of quantitative first pass CT perfusion imaging in successfully treated versus unsuccessfully treated/untreated patients. In: Proceedings of the 41st Annual Meeting of the American Society of Neuroradiology, 2003, Washington

    Google Scholar 

  63. Rohl L, Ostergaard L, Simonsen CZ et al (2001) Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke 32(5):1140–1146

    PubMed  CAS  Google Scholar 

  64. Grandin CB, Duprez TP, Smith AM et al (2001) Usefulness of magnetic resonance-derived quantitative measurements of cerebral blood flow and volume in prediction of infarct growth in hyperacute stroke. Stroke 32(5):1147–1153

    PubMed  CAS  Google Scholar 

  65. Schaefer PW, Ozsunar Y, He J et al (2003) Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol 24(3):436–443

    PubMed  Google Scholar 

  66. Eastwood JD, Lev MH, Wintermark M et al (2003) Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. AJNR Am J Neuroradiol 24(9):1869–1875

    PubMed  Google Scholar 

  67. Wintermark M, Reichhart M, Cuisenaire O et al (2002) Comparison of admission perfusion computed tomography and qualitative diffusion-and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 33(8):2025–2031

    Article  PubMed  CAS  Google Scholar 

  68. Lev MH, Hunter GJ, Hamberg LM et al (2002) CT versus MR imaging in acute stroke: comparison of perfusion abnormalities at the infarct core. In: Proceedings of the 40th Annual Meeting of the American Society of Neuroradiology, 2002, Vancouver

    Google Scholar 

  69. Lev MH (2003) CT versus MR for acute stroke imaging: is the “obvious” choice necessarily the correct one? AJNR Am J Neuroradiol 24(10):1930–1931

    PubMed  Google Scholar 

  70. Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20(9):1276–1293

    Article  PubMed  CAS  Google Scholar 

  71. Jovin TG, Yonas H, Gebel JM et al (2003) The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 34(10):2426–2433

    Article  PubMed  Google Scholar 

  72. Lev MH, Roccatagliata L, Murphy EK et al (2004) A CTA based, multivariable, “benefit of recanalization” model for acute stroke triage: core infarct size on CTA source images independently predicts outcome. In: Proceedings of the 42nd Annual Meeting of the American Society of Neuroradiology, 2004, Seattle

    Google Scholar 

  73. Suarez J, Sunshine J, Tarr R et al (1999) Predictors of clinical improvement, angiographic recanalization, and intracranial hemorrhage after intra-arterial thrombolysis for acute ischemic stroke. Stroke 30:2094–2100

    PubMed  CAS  Google Scholar 

  74. Molina CA, Alexandrov AV, Demchuk AM et al (2004) Improving the predictive accuracy of recanalization on stroke outcome in patients treated with tissue plasminogen activator. Stroke 35(1):151–156

    Article  PubMed  CAS  Google Scholar 

  75. Baird AE, Dambrosia J, Janket S et al (2001) A threeitem scale for the early prediction of stroke recovery. Lancet 357(9274):2095–2099

    Article  PubMed  CAS  Google Scholar 

  76. Nighoghossian N, Hermier M, Adeleine P et al (2003) Baseline magnetic resonance imaging parameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke 34(2):458–463

    Article  PubMed  CAS  Google Scholar 

  77. Swap C, Lev M, McDonald C et al (2002) Degree of oligemia by perfusion-weighted CT and risk of hemorrhage after IA thrombolysis. In: Stroke — Proceedings of the 27th International Conference on Stroke and Cerebral Circulation, 2002, San Antonio

    Google Scholar 

  78. Ogasawara K, Ogawa A, Ezura M et al (2001) Brain single-photon emission CT studies using 99mTc-HMPAO and 99mTc-ECD early after recanalization by local intraarterial thrombolysis in patients with acute embolic middle cerebral artery occlusion. AJNR Am J Neuroradiol 22(1):48–53

    PubMed  CAS  Google Scholar 

  79. Ueda T, Sakaki S, Yuh W (1999) Outcome in acute stroke with successful intra-arterial thrombolysis procedure and predictive value of initial single-photon emission-computed tomography. J Cereb Blood Flow Metab 19:99–108

    Article  PubMed  CAS  Google Scholar 

  80. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulatinos using singular value decomposition. Magn Reson Med 44(3):466–473

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Shetty, S.K., Lev, M.H. (2006). MDCT Perfusion in Acute Stroke. In: Saini, S., Rubin, G.D., Kalra, M.K. (eds) MDCT:A Practical Approach. Springer, Milano. https://doi.org/10.1007/88-470-0413-6_14

Download citation

  • DOI: https://doi.org/10.1007/88-470-0413-6_14

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0412-2

  • Online ISBN: 978-88-470-0413-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics