Skip to main content

Abstract

The technique of microdialysis provides the opportunity for continuous monitoring of metabolic changes in the tissue before they are reflected in peripheral blood chemistry or in systemic physiological parameters. The method was developed more than 30 years ago for monitoring chemical events in the animal brain [1],[3] and has become an accepted scientific standard technique. Altogether there have been about 10 000 published studies reporting the use of microdialysis. In the late 1980s, the possibilities for monitoring the human brain were first explored [3], and microdialysis has since then been used for biochemical monitoring of most human tissues. Clinical application of the technique was, however, delayed due to lack of instruments suitable for clinical routine use, including bedside monitoring of relevant biochemical variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ungerstedt U, Pycock CH (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 1278:1–5

    Google Scholar 

  2. Ungerstedt U (1991) Microdialysis — principles and application for studies in animal and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  3. Meyerson BA, Linderoth B, Karlsson H et al (1990) Extracellular measurements in the thalamus of parkinsonian patients. Life Sci 46:301–308

    Article  PubMed  CAS  Google Scholar 

  4. Ungerstedt U, Herrera-Marschitz M, Jungnelius U et al (1982) Dopamine synaptic mechanisms reflected in studies combining behavioural recordings and brain dialysis. In: Kotisaka M et al (eds) Advances in dopamine research. Pergamon Press, New York, pp 219–231

    Google Scholar 

  5. Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial dialysis. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. Wiley and Sons, New York, pp 8–107

    Google Scholar 

  6. Hillman J, Åneman O, Andersson C et al (2005) A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery 56:1264–1270

    Article  PubMed  Google Scholar 

  7. Hutchinson PJ, O’Connell MT, Al-Rawi PG et al (2000) Clinical cerebral microdialysis: a methodological study. J Neurosurg 93:37–43

    PubMed  CAS  Google Scholar 

  8. Tunblad K, Ederoth P, Gärdenfors A et al (2004) Altered blood-brain barrier transport of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand 48:294–301

    Article  PubMed  CAS  Google Scholar 

  9. Ederoth P, Tunblad K, Bouw R et al (2004) Blood-brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol 57:427–435

    Article  PubMed  CAS  Google Scholar 

  10. Reinstrup P, Ståhl N, Hallström Å et al (2000) Intracerebral microdialysis in clinical practice. Normal values and variations during anaesthesia and neurosurgical operations. Neurosurgery. 47:701–710

    Article  PubMed  CAS  Google Scholar 

  11. Gärdenfors A, Nilsson F, Skagerberg G et al (2002) Cerebral physiological and biochemical changes during vasogenic brain edema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir 144:601–608

    Article  Google Scholar 

  12. Ungerstedt U, Bäckström T, Hallström Å et al (1997) Microdialysis in normal and injured human brain. In: Kinney JM, Tucker HN (eds) Physiology stress and malnutrition. Functional correlates, nutritional intervention. Lippincott — Raven, Philadelphia, pp 361–374

    Google Scholar 

  13. Hillered L, Valtysson J, Enblad P et al (1998) Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry 64:486–491

    Article  PubMed  CAS  Google Scholar 

  14. Hagström-Toft E, Arner P, Wahrenberg H et al (1993) Adrenergic regulation of human tissue metabolism in situ during mental stress. Endocrinol Metab 76:392–398

    Article  Google Scholar 

  15. Blasberg RG, Fenstermacher JD, Patlack CS (1983) Transport of α-aminobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–12

    PubMed  CAS  Google Scholar 

  16. Hamberger A, Nyström B (1984) Extra-and intracellular amino acids in the hippocampus during development of hepatic encephalopathy. Neurochem Res 9:1181–1192

    Article  PubMed  CAS  Google Scholar 

  17. Benveniste H, Drejer J, Shousboe A et al (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  PubMed  CAS  Google Scholar 

  18. Benveniste H, Diemer NH (1987) Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol (Berl) 74:234–238

    Article  PubMed  CAS  Google Scholar 

  19. Bolinder J, Ungerstedt U, Arner P (1993) Long-term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients. Lancet 342:1080–1085

    Article  PubMed  CAS  Google Scholar 

  20. Bolinder J, Hagstrom-Toft E, Ungerstedt U et al (1997) Self-monitoring of blood glucose in type I diabetic patients: comparison with continuous microdialysis measurements of glucose in subcutaneous adipose tissue during ordinary life conditions. Diabetes Care 20:64–70

    Article  PubMed  CAS  Google Scholar 

  21. Van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  22. Van den Berghe G, Wouters PJ, Bouillon R (2003) Outcome benefit of intensive insulin therapy in critically ill: insulin dose versus glycemic control. Crit Care Med 31:359–366

    Article  PubMed  CAS  Google Scholar 

  23. Lourido J, Ederoth P, Sundvall N et al (2002) Correlation between blood glucose concentration and glucose level in subcutaneous adipose tissue evaluated with microdialysis during neuro intensive care. Scand J Clin Lab Invest 62: 285–292

    Article  PubMed  CAS  Google Scholar 

  24. Rosdahl H, Hamrin K, Ungerstedt U et al (1998) Metabolite levels in human skeletal muscle and adipose tissue studied with microdialysis at low perfusion flow. Am J Physiol 274:E936–E945

    PubMed  CAS  Google Scholar 

  25. Moberg E, Hagstrom-Toft E, Arner P (1997) Protracted glucose fall in subcutaneous adipose tissue and skeletal muscle compared with blood during insulin-induced hypoglycaemia. Diabetologia 40:1320–1326

    Article  PubMed  CAS  Google Scholar 

  26. Grände PO, Asgeirsson B, Nordström CH (2002) Volume targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments. Acta Anaesthesiol Scand 46:929–941

    Article  PubMed  Google Scholar 

  27. Röjdmark J, Hedén P, Ungerstedt U (1998) Microdialysis — a new technique for free flap surveillance: methodological description. Eur J Plast Surg 21:344–348

    Article  Google Scholar 

  28. Röjdmark J, Blomqvist L, Malm M et al (1998) Metabolism in myocutaneous flaps studied by in situ microdialysis. Scan J Plast Reconstr Hand Surg 32:27–34

    Article  Google Scholar 

  29. Setälä LP, Korvenoja EMJ, Härmä MA et al (2004) Glucose, lactate, and pyruvate response in an experimental model of microvascular flap ischemia and reperfusion: a microdialysis study. Microsurgery 24:223–231

    Article  PubMed  Google Scholar 

  30. Nowak G, Ungerstedt J, Wernerman J et al (2002) Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model. Liver Transpl 8:424–432

    Article  PubMed  Google Scholar 

  31. Nowak G, Ungerstedt J, Wernerman J et al (2002) Clinical experiences in continuous graft monitoring with microdialysis early after liver transplantation. Br J Surg 89:1169–1175

    Article  PubMed  CAS  Google Scholar 

  32. Sommer T (2004) Microdialysis in the assessment of regional intestinal ischemia. Doctoral thesis. Center of Sensory-motor Interaction, Aalborg University, Denmark

    Google Scholar 

  33. Ungerstedt J, Nowak G, Ericzon BG et al (2003) Intraperitoneal microdialysis (IPM): a new technique for monitoring intestinal ischemia studied in a porcine model. Shock 20:91–96

    Article  PubMed  Google Scholar 

  34. Jansson K, Ungerstedt J, Jonsson T et al (2003) Human intraperitoneal microdialysis: increased lactate/pyruvate ratio suggests early visceral ischemia. A pilot study. Scand J Gastroenterol 38:1007–1011

    Article  PubMed  CAS  Google Scholar 

  35. Jansson K, Redler B, Truedsson L et al (2004) Intraperitoneal cytokine response after major surgery: higher postoperative intraperitoneal versus systemic cytkine levels suggest the gastrointestinal tract as a major source of the postoperative inflammatory reaction. Am J Surg 187:373–377

    Article  CAS  Google Scholar 

  36. Jansson K, Redler B, Truedsson L et al (2004) Postoperative on-line monitoring with Intraperitoneal Microdialysis (IPM) is a sensitive clinical method for measuring increased anaerobic metabolism that correlates to cytokine response. Scand J Gastroenterol 39:434–439

    Article  PubMed  CAS  Google Scholar 

  37. Jansson K, Strand I, Redler B et al (2004) Results of intraperitoneal microdialysis depend on the location of the catheter. Scand J Clin Lab Invest 64:63–70

    Article  PubMed  CAS  Google Scholar 

  38. Siesjö BK (1978) Brain energy metabolism. John Wiley & Sons, Chichester New York Brisbane Toronto

    Google Scholar 

  39. Ståhl N, Schalén W, Ungerstedt U et al (2003) Bedside biochemical monitoring of the penumbra zone surrounding an evacuated acute subdural haematoma. Acta Neurol Scand 108:211–215

    Article  PubMed  Google Scholar 

  40. Engström M, Polito A, Reinstrup P et al (2005) Intracerebral microdialysis in clinical routine — the importance of catheter location. J Neurosurg 102:460–469

    PubMed  Google Scholar 

  41. Nordström CH, Reinstrup P, Xu W et al (2003) Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology 98:809–814

    Article  PubMed  Google Scholar 

  42. Nordström CH (2003) Assessment of critical thresholds for cerebral perfusion pressure by bedside monitoring of regional energy metabolism. Neurosurg Focus 15(6); Article 5

    Google Scholar 

  43. Nordström CH (2005) Treatment of increased intracranial pressure: Physiological and biochemical principles underlying volume targeted therapy — the ‘Lund concept’. Neurocritical Care 2:83–96

    Article  PubMed  Google Scholar 

  44. Rosdahl H, Hamrin K, Ungerstedt U et al (2000) A microdialysis method for the in situ investigation of the action of large peptide molecules in human skeletal muscle: detection of local metabolic effects of insulin. Int J Biol Macromol 28:69–73

    Article  PubMed  CAS  Google Scholar 

  45. Alfredson H, Thorsen K, Lorentzon R (1999) In situ microdialysis in tendon tissue: high levels of glutamate, but not prostaglandin E2 inchronic Achilles tendon pain. Knee Surg Sports Traumatol Arthrosc 7:378–381

    Article  PubMed  CAS  Google Scholar 

  46. Alfredsson H, Lorentzon R (2003) Intratendinous glutamate levels and eccentric training in chronic Achilles tendinosis: a prospective study using microdialysis technique. Knee Surg Sports Traumatol Arthrosc 11:196–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this paper

Cite this paper

Nordström, C.H., Ungerstedt, U. (2006). Microdialysis: principles and techniques. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/88-470-0407-1_5

Download citation

  • DOI: https://doi.org/10.1007/88-470-0407-1_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0406-1

  • Online ISBN: 978-88-470-0407-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics