Skip to main content
  • 988 Accesses

Abstract

Although it would seem obvious that antibiotics benefit patients with infection, the high hospital mortality associated with antibiotic-treated sepsis in critically ill patients suggests otherwise. The success of antibiotics is influenced by immuno-competence, severity of insult, timing of treatment, and physiological reserve. McCabe and Jackson provided the first convincing study assessing the efficacy of antibiotics in patients with gram-negative bacteraemia [1]. They classified patients according to their underlying condition as rapidly fatal, ultimately fatal, or non-fatal. Among those with a rapidly or ultimately fatal condition, as might be expected there was no impact of antibiotics on mortality. However, for those with a non-fatal condition appropriate antibiotics made a highly significant difference. In addition, it has been shown that prompt administration of empirical antibiotics reduces the frequency of shock associated with bacteraemia [2]. More recent intensive care studies have re-emphasised the importance and impact of early administration and appropriate antibiotic use on hospital mortality, with appropriateness based on in vitro sensitivities [3]–[5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCabe WR, Jackson GG (1962) Gram negative bacteremia. Clinical, laboratory, and therapeutic observations. Arch Intern Med 110:92–100

    Google Scholar 

  2. Kreger BE, Craven DE, McCabe WR (1980) Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68:344–355

    Article  PubMed  CAS  Google Scholar 

  3. Rello J, Gallego M, Mariscal D et al (1997) The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 156:196–200

    PubMed  CAS  Google Scholar 

  4. Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462–474

    Article  PubMed  CAS  Google Scholar 

  5. Lodise TP, McKinnon PS, Swiderski L, Rybak MJ (2003) Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis 36:1418–1423

    Article  PubMed  Google Scholar 

  6. MacGowan AP, Wise R (2001) Establishing MIC breakpoints and the interpretation of in vitro susceptibility tests. J Antimicrob Chemother 48(Suppl 1):17–28

    PubMed  CAS  Google Scholar 

  7. Bryan CS, Reynolds KL, Brenner ER (1983) Analysis of 1186 episodes of gram-negative bacteremia in non-university hospitals: the effects of antimicrobial therapy. Rev Infect Dis 5:629–638

    PubMed  CAS  Google Scholar 

  8. Lorian V, Burns L (1990) Predictive value of susceptibility tests for the outcome of antibacterial therapy. J Antimicrob Chemother 25:175–181

    Article  PubMed  CAS  Google Scholar 

  9. Eagle H, Fleischman R, Musselman A (1950) Effect of schedule of adminstration on the therapeutic efficacy of penicillin. Am J Med 9:280–299

    Article  PubMed  CAS  Google Scholar 

  10. Vogelman B, Craig WA (1986) Kinetics of antimicrobial activity. J Pediatr 108:835–840

    Article  PubMed  CAS  Google Scholar 

  11. Gerber AU, Feller Segessenmann C (1985) In-vivo assessment of in-vitro killing patterns of Pseudomonas aeruginosa. J Antimicrob Chemother 15(Suppl A):201–206

    PubMed  CAS  Google Scholar 

  12. Drusano GL, Forrest A, Snyder MJ et al (1988) An evaluation of optimal sampling strategy and adaptive study design. Clin Pharmacol Ther 44:232–238

    Article  PubMed  CAS  Google Scholar 

  13. Benko AS, Cappelletty DM, Kruse JA, Rybak MJ (1996) Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections. Antimicrob Agents Chemother 40:691–695

    PubMed  CAS  Google Scholar 

  14. Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38:931–936

    PubMed  CAS  Google Scholar 

  15. Manduru M, Mihm LB, White RL et al (1997) In vitro pharmacodynamics of ceftazidime against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 41:2053–2056

    PubMed  CAS  Google Scholar 

  16. Craig WA, Ebert SC (1990) Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl 74:63–70

    PubMed  CAS  Google Scholar 

  17. Thomas JK, Forrest A, Bhavnani SM et al (1998) Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 42:521–527

    PubMed  CAS  Google Scholar 

  18. Vogelman B, Gudmundsson S, Turnidge J et al (1988) In vivo postantibiotic effect in a thigh infection in neutropenic mice. J Infect Dis 157:287–298

    PubMed  CAS  Google Scholar 

  19. Gudmundsson S, Vogelman B, Craig WA (1986) The in-vivo postantibiotic effect of imipenem and other new antimicrobials. J Antimicrob Chemother 18(Suppl E):67–73

    PubMed  CAS  Google Scholar 

  20. Hostacka A, Karelova E (1997) Outer membrane proteins profiles of Pseudomonas aeruginosa after the post-antibiotic effect of imipenem. Microbios 90:45–50

    PubMed  CAS  Google Scholar 

  21. Fuentes F, Martin MM, Izquierdo J et al (1995) In vivo and in vitro study of several pharmacodynamic effects of meropenem. Scand J Infect Dis 27:469–474

    Article  PubMed  CAS  Google Scholar 

  22. Hanberger H, Svensson E, Nilsson LE, Nilsson M (1995) Pharmacodynamic effects of meropenem on gram-negative bacteria. Eur J Clin Microbiol Infect Dis 14:383–390

    Article  PubMed  CAS  Google Scholar 

  23. Turnidge JD, Gudmundsson S, Vogelman B, Craig WA (1994) The postantibiotic effect of antifungal agents against common pathogenic yeasts. J Antimicrob Chemother 34:83–92

    Article  PubMed  CAS  Google Scholar 

  24. Andes D, van Ogtrop M (1999) Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother 43:2116–2120

    PubMed  CAS  Google Scholar 

  25. Barza M (1994) Challenges to antibiotic activity in tissue. Clin Infect Dis 19:910–915

    PubMed  CAS  Google Scholar 

  26. Gerding DN, Van Etta LL, Peterson LR (1982) Role of serum protein binding and multiple antibiotic doses in the extravascular distribution of ceftizoxime and cefotaxime. Antimicrob Agents Chemother 22:844–847

    PubMed  CAS  Google Scholar 

  27. Wise R, Gillett AP, Cadge B et al (1980) The influence of protein binding upon tissue fluid levels of six beta-lactam antibiotics. J Infect Dis 142:77–82

    PubMed  CAS  Google Scholar 

  28. Merrikin DJ, Briant J, Rolinson GN (1983) Effect of protein binding on antibiotic activity in vivo. J Antimicrob Chemother 11:233–238

    Article  PubMed  CAS  Google Scholar 

  29. Chambers HF, Mills J, Drake TA, Sande MA (1984) Failure of a once-daily regimen of cefonicid for treatment of endocarditis due to Staphylococcus aureus. Rev Infect Dis 6(Suppl 4):S870–S874

    PubMed  Google Scholar 

  30. Van Etta LL, Peterson LR, Fasching CE, Gerding DN (1982) Effect of the ratio of surface area to volume on the penetration of antibiotics in to extravascular spaces in an in vitro model. J Infect Dis 146:423–428

    PubMed  Google Scholar 

  31. Lambert HP (1978) Clinical significance of tissue penetration of antibiotics in the respiratory tract. Scand J Infect Dis Suppl 14:262–266

    PubMed  CAS  Google Scholar 

  32. Pennington JE (1981) Penetration of antibiotics into respiratory secretions. Rev Infect Dis 3:67–73

    PubMed  CAS  Google Scholar 

  33. Cruciani M, Gatti G, Lazzarini L et al (1996) Penetration of vancomycin into human lung tissue. J Antimicrob Chemother 38:865–869

    Article  PubMed  CAS  Google Scholar 

  34. Echols RM (1993) The selection of appropriate dosages for intravenous ciprofloxacin. J Antimicrob Chemother 31:783–787

    Article  PubMed  CAS  Google Scholar 

  35. Forrest A, Nix DE, Ballow CH et al (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081

    PubMed  CAS  Google Scholar 

  36. Lipman J, Scribante J, Gous AG et al (1998) Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. The Baragwanath Ciprofloxacin Study Group. Antimicrob Agents Chemother 42:2235–2239

    PubMed  CAS  Google Scholar 

  37. Highet VS, Forrest A, Ballow CH, Schentag JJ (1999) Antibiotic dosing issues in lower respiratory tract infection: population-derived area under inhibitory curve is predictive of efficacy. J Antimicrob Chemother 43(Suppl A):55–63

    Article  PubMed  CAS  Google Scholar 

  38. Rotschafer JC, Zabinski RA, Walker KJ (1992) Pharmacodynamic factors of antibiotic efficacy. Pharmacotherapy 12:64S–70S

    PubMed  CAS  Google Scholar 

  39. Young RJ, Lipman J, Gin T et al (1997) Intermittent bolus dosing of ceftazidime in critically ill patients. J Antimicrob Chemother 40:269–273

    Article  PubMed  CAS  Google Scholar 

  40. Ronchera-Oms CL, Gregorio S, Sanllehi N (1997) Should continuous infusion of betalactam antibiotics be the first-line approach? J Clin Pharm Ther 22:159–161

    Article  PubMed  CAS  Google Scholar 

  41. Thalhammer F, Traunmuller F, El Menyawi I et al (1999) Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother 43:523–527

    Article  PubMed  CAS  Google Scholar 

  42. Lipman J, Gomersall C, Gin T et al (1999) Continuous infusion ceftazidime in intensive care: a randomised controlled trial. J Antimicrob Chemother 43:309–311

    Article  PubMed  CAS  Google Scholar 

  43. MacGowan AP, Bowker KE (1998) Continuous infusion of beta-lactam antibiotics. Clin Pharmacokinet 35:391–402

    Article  PubMed  CAS  Google Scholar 

  44. Peterson LR, Gerding DN, Fasching CE (1981) Effects of method of antibiotic administration on extravascular penetration: cross-over study of cefazolin given by intermittent injection or constant infusion. J Antimicrob Chemother 7:71–79

    Article  PubMed  CAS  Google Scholar 

  45. Roosendaal R, Bakker Woudenberg IA (1990) Impact of the antibiotic dosage schedule on efficacy in experimental lung infections. Scand J Infect Dis Suppl 74:155–162

    PubMed  CAS  Google Scholar 

  46. Mouton JW, Horrevorts AM, Mulder PG et al (1990) Pharmacokinetics of ceftazidime in serum and suction blister fluid during continuous and intermittent infusions in healthy volunteers. Antimicrob Agents Chemother 34:2307–2311

    PubMed  CAS  Google Scholar 

  47. Hyatt JM, McKinnon PS, Zimmer GS, Schentag JJ (1995) The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Focus on antibacterial agents. Clin Pharmacokinet 28:143–160

    PubMed  CAS  Google Scholar 

  48. Jawetz E (1946) Dynamics of the action of penicillin in experimental animals. Arch Intern Med 77:1–16

    Google Scholar 

  49. Ljungberg B, Nilsson Ehle I (1989) Advancing age and acute infection influence the kinetics of ceftazidime. Scand J Infect Dis 21:327–332

    Article  PubMed  CAS  Google Scholar 

  50. Shikuma LR, Ackerman BH, Weaver RH et al (1990) Effects of treatment and the metabolic response to injury on drug clearance: a prospective study with piperacillin. Crit Care Med 18:37–41

    Article  PubMed  CAS  Google Scholar 

  51. Gomez CM, Cordingly JJ, Palazzo MG (1999) Altered pharmacokinetics of ceftazidime in critically ill patients. Antimicrob Agents Chemother 43:1798–1802

    PubMed  CAS  Google Scholar 

  52. Lipman J, Wallis SC, Rickard C (1999) Low plasma cefepime levels in critically ill septic patients: pharmacokinetic modeling indicates improved troughs with revised dosing. Antimicrob Agents Chemother 43:2559–2561

    PubMed  CAS  Google Scholar 

  53. Friedrich LV, White RL, Kays MB et al (1991) Aztreonam pharmacokinetics in burn patients. Antimicrob Agents Chemother 35:57–61

    PubMed  CAS  Google Scholar 

  54. Boucher BA, Kuhl DA, Hickerson WL (1992) Pharmacokinetics of systemically administered antibiotics in patients with thermal injury. Clin Infect Dis 14:458–463

    PubMed  CAS  Google Scholar 

  55. Bourget P, Lesne Hulin A, Le Reveille R et al (1996) Clinical pharmacokinetics of piperacillin-tazobactam combination in patients with major burns and signs of infection. Antimicrob Agents Chemother 40:139–145

    PubMed  CAS  Google Scholar 

  56. Fantin B, Farinotti R, Thabaut A, Carbon C (1994) Conditions for the emergence of resistance to cefpirome and ceftazidime in experimental endocarditis due to Pseudomonas aeruginosa. J Antimicrob Chemother 33:563–569

    Article  PubMed  CAS  Google Scholar 

  57. Nicolau DP, Nightingale CH, Banevicius MA et al (1996) Serum bactericidal activity of ceftazidime: continuous infusion versus intermittent injections. Antimicrob Agents Chemother 40:61–64

    PubMed  CAS  Google Scholar 

  58. Robaux MA, Dube L, Caillon J et al (2001) In vivo efficacy of continuous infusion versus intermittent dosing of ceftazidime alone or in combination with amikacin relative to human kinetic profiles in a Pseudomonas aeruginosa rabbit endocarditis model. J Antimicrob Chemother 47:617–622

    Article  PubMed  CAS  Google Scholar 

  59. Nicolau DP, McNabb J, Lacy MK et al (2001) Continuous versus intermittent administration of ceftazidime in intensive care unit patients with nosocomial pneumonia. Int J Antimicrob Agents 17:497–504

    Article  PubMed  CAS  Google Scholar 

  60. Bodey GP, Ketchel SJ, Rodriguez V (1979) A randomized study of carbenicillin plus cefamandole or tobramycin in the treatment of febrile episodes in cancer patients. Am J Med 67:608–616

    Article  PubMed  CAS  Google Scholar 

  61. Harding I, MacGowan AP, White LO et al (2000) Teicoplanin therapy for Staphylococcus aureus septicaemia: relationship between pre-dose serum concentrations and outcome. J Antimicrob Chemother 45:835–841

    Article  PubMed  CAS  Google Scholar 

  62. Brinquin L, Rousseau JM, Boulesteix G et al (1993) Continuous infusion of vancomycin in post-neurosurgical staphylococcal meningitis in adults. Presse Med 22:1815–1817

    PubMed  CAS  Google Scholar 

  63. Conil JM, Favarel H, Laguerre J et al (1994) Continuous administration of vancomycin in patients with severe burns. Presse Med 23:1554–1558

    PubMed  CAS  Google Scholar 

  64. Di Filippo A, De Gaudio AR, Novelli A et al (1998) Continuous infusion of vancomycin in methicillin-resistant staphylococcus infection. Chemotherapy 44:63–68

    Article  PubMed  Google Scholar 

  65. Albanese J, Leone M, Bruguerolle B et al (2000) Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother 44:1356–1358

    Article  PubMed  CAS  Google Scholar 

  66. Gauzit R (2002) The use of glycopeptides in intensive care and anaesthesia (French). Ann Fr Anesth Reanim 21:414–417

    Article  PubMed  CAS  Google Scholar 

  67. Wysocki M, Delatour F, Faurisson F et al (2001) Continuous versus intermittent infusion of vancomycin in severe staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 45:2460–2467

    Article  PubMed  CAS  Google Scholar 

  68. Byl B, Jacobs F, Wallemacq P et al (2003) Vancomycin penetration of uninfected pleural fluid exudate after continuous or intermittent infusion. Antimicrob Agents Chemother 47:2015–2017

    Article  PubMed  CAS  Google Scholar 

  69. Jacqueline C, Batard E, Perez L et al (2002) In vivo efficacy of continuous infusion versus intermittent dosing of linezolid compared to vancomycin in a methicillin-resistant Staphylococcus aureus rabbit endocarditis model. Antimicrob Agents Chemother 46:3706–3711

    Article  PubMed  CAS  Google Scholar 

  70. Pennington JE, Dale DC, Reynolds HY, MacLowry JD (1975) Gentamicin sulfate pharmacokinetics: lower levels of gentamicin in blood during fever. J Infect Dis 132:270–275

    PubMed  CAS  Google Scholar 

  71. Triginer C, Izquierdo I, Fernandez R et al (1990) Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med 16:303–306

    Article  PubMed  CAS  Google Scholar 

  72. Triginer C, Izquierdo I, Fernandez R et al (1991) Changes in gentamicin pharmacokinetic profiles induced by mechanical ventilation. Eur J Clin Pharmacol 40:297–302

    Article  PubMed  CAS  Google Scholar 

  73. Moore RD, Lietman PS, Smith CR (1987) Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155:93–99

    PubMed  CAS  Google Scholar 

  74. Deziel Evans LM, Murphy JE, Job ML (1986) Correlation of pharmacokinetic indices with therapeutic outcome in patients receiving aminoglycosides. Clin Pharm 5:319–324

    PubMed  CAS  Google Scholar 

  75. Jackson GG, Lolans VT, Daikos GL (1990) The inductive role of ionic binding in the bactericidal and postexposure effects of aminoglycoside antibiotics with implications for dosing. J Infect Dis 162:408–413

    PubMed  CAS  Google Scholar 

  76. Karlowsky JA, Zhanel GG, Davidson RJ, Hoban DJ (1994) Postantibiotic effect in Pseudomonas aeruginosa following single and multiple aminoglycoside exposures in vitro. J Antimicrob Chemother 33:937–947

    Article  PubMed  CAS  Google Scholar 

  77. Kashuba AD, Nafziger AN, Drusano GL, Bertino JS Jr (1999) Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 43:623–629

    PubMed  CAS  Google Scholar 

  78. Ali MZ, Goetz MB (1997) A meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis 24:796–809

    PubMed  CAS  Google Scholar 

  79. Bailey TC, Little JR, Littenberg B et al (1997) A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis 24:786–795

    PubMed  CAS  Google Scholar 

  80. Barza M, Ioannidis JP, Cappelleri JC, Lau J (1996) Single or multiple daily doses of aminoglycosides: a meta-analysis. Br Med J 312:338–345

    CAS  Google Scholar 

  81. Munckhof WJ, Grayson ML, Turnidge JD (1996) A meta-analysis of studies on the safety and efficacy of aminoglycosides given either once daily or as divided doses. J Antimicrob Chemother 37:645–663

    Article  PubMed  CAS  Google Scholar 

  82. Rybak MJ, Abate BJ, Kang SL et al (1999) Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 43:1549–1555

    PubMed  CAS  Google Scholar 

  83. Moore RD, Smith CR, Lietman PS (1984) Risk factors for the development of auditory toxicity in patients receiving aminoglycosides. J Infect Dis 149:23–30

    PubMed  CAS  Google Scholar 

  84. Moore RD, Smith CR, Lipsky JJ et al (1984) Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med 100:352–357

    PubMed  CAS  Google Scholar 

  85. Nicolau DP, Freeman CD, Belliveau PP et al (1995) Experience with a once-daily aminoglycoside program administered to 2184 adult patients. Antimicrob Agents Chemother 39:650–655

    PubMed  CAS  Google Scholar 

  86. Bauernfeind A (1993) Questioning dosing regimens of ciprofloxacin. J Antimicrob Chemother 31:789–798

    Article  PubMed  CAS  Google Scholar 

  87. Neu HC, Kumada T, Chin NX, Mandell W (1987) The post-antimicrobial suppressive effect of quinolone agents. Drugs Exp Clin Res 13:63–67

    PubMed  CAS  Google Scholar 

  88. Alados JC, Gutierrez J, Garcia F et al (1990) Post-antibiotic effect of three quinolones against gram negative isolates from urine. Med Lab Sci 47:272–277

    PubMed  CAS  Google Scholar 

  89. Fuentes F, Martin MM, Izquierdo J et al (1996) Pharmacodynamic effects of ciprofloxacin, fleroxacin and lomefloxacin in vivo and in vitro. Chemotherapy 42:354–362

    PubMed  CAS  Google Scholar 

  90. Fung Tomc J, Kolek B, Bonner DP (1993) Ciprofloxacin-induced, low-level resistance to structurally unrelated antibiotics in Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 37:1289–1296

    PubMed  CAS  Google Scholar 

  91. Van der Auwera P, Matsumoto T, Husson M (1988) Intraphagocytic penetration of antibiotics. J Antimicrob Chemother 22:185–192

    Article  PubMed  Google Scholar 

  92. Gerding DN, Hall WH, Schierl EA (1977) Antibiotic concentrations in ascitic fluid of patients with ascites and bacterial peritonitis. Ann Intern Med 86:708–713

    PubMed  CAS  Google Scholar 

  93. Thys JP, Vanderhoeft P, Herchuelz A et al (1988) Penetration of aminoglycosides in uninfected pleural exudates and in pleural empyemas. Chest 93:530–532

    Article  PubMed  CAS  Google Scholar 

  94. Vacek V, Hejzlar M, Skalova M (1969) Penetration of antibiotics into the cerebro-spinal fluid in inflammatory conditions. 3. Gentamicin Int Z Klin Pharmakol Ther Toxikol 2:277–279

    CAS  Google Scholar 

  95. Grange JD, Gouyette A, Gutmann L et al (1989) Pharmacokinetics of amoxycillin/clavulanic acid in serum and ascitic fluid in cirrhotic patients. J Antimicrob Chemother 23:605–611

    Article  PubMed  CAS  Google Scholar 

  96. Cook PJ, Andrews JM, Woodcock J et al (1994) Concentration of amoxycillin and clavulanate in lung compartments in adults without pulmonary infection. Thorax 49:1134–1138

    Article  PubMed  CAS  Google Scholar 

  97. Jacobs RF, Thompson JW, Kiel DP, Johnson D (1986) Cellular uptake and cell-associated activity of third generation cephalosporins. Pediatr Res 20:909–912

    Article  PubMed  CAS  Google Scholar 

  98. Kummel A, Schlosser V, Petersen E, Daschner FD (1985) Pharmacokinetics of imipenem-cilastatin in serum and tissue. Eur J Clin Microbiol 4:609–610

    Article  PubMed  CAS  Google Scholar 

  99. Rolando N, Wade JJ, Philpott Howard JN et al (1994) The penetration of imipenem/cilastatin into ascitic fluid in patients with chronic liver disease. J Antimicrob Chemother 33:163–167

    Article  PubMed  CAS  Google Scholar 

  100. Muller Serieys C, Bergogne Berezin E, Rowan C, Dombret MC (1987) Imipenem penetration into bronchial secretions. J Antimicrob Chemother 20:618–619

    Article  PubMed  CAS  Google Scholar 

  101. Mayer M, Tophof C, Opferkuch W (1988) Bile levels of imipenem in patients with T-drain following the administration of imipenem/cilastatin. Infection 16:225–228

    Article  PubMed  CAS  Google Scholar 

  102. Hand WL, King Thompson NL (1989) The entry of antibiotics into human monocytes. J Antimicrob Chemother 23:681–689

    Article  PubMed  CAS  Google Scholar 

  103. Runyon BA, Akriviadis EA, Sattler FR, Cohen J (1991) Ascitic fluid and serum cefotaxime and desacetyl cefotaxime levels in patients treated for bacterial peritonitis. Dig Dis Sci 36:1782–1786

    Article  PubMed  CAS  Google Scholar 

  104. Soussy CJ, Deforges LP, Le Van Thoi J et al (1980) Cefotaxime concentration in the bile and wall of the gallbladder. J Antimicrob Chemother 6:A125–130

    Google Scholar 

  105. Lode H, Kemmerich B, Gruhlke G et al (1980) Cefotaxime in bronchopulmonary infections—a clinical and pharmacological study. J Antimicrob Chemother 6:A193–198

    Google Scholar 

  106. Belohradsky BH, Bruch K, Geiss D et al (1980) Intravenous cefotaxime in children with bacterial meningitis. Lancet 1:61–63

    Article  PubMed  CAS  Google Scholar 

  107. Lechi A, Arosio E, Xerri L et al (1982) The kinetics of cefuroxime in ascitic and pleural fluid. Int J Clin Pharmacol Ther 20:493–496

    CAS  Google Scholar 

  108. Swedish Study Group (1982) Cefuroxime versus ampicillin and chloramphenicol for the treatment of bacterial meningitis. Report from a Swedish Study Group. Lancet 1:295–299

    Google Scholar 

  109. Koga H (1987) High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother 31:1904–1908

    PubMed  CAS  Google Scholar 

  110. Adam D, Reichart B, Williams KJ (1983) Penetration of ceftazidime into human tissue in patients undergoing cardiac surgery. J Antimicrob Chemother 12:A269–273

    Article  Google Scholar 

  111. Benoni G, Arosio E, Raimondi MG et al (1985) Pharmacokinetics of ceftazidime and ceftriaxone and their penetration into the ascitic fluid. J Antimicrob Chemother 16:267–273

    Article  PubMed  CAS  Google Scholar 

  112. Maderazo EG, Breaux SP, Woronick CL et al (1988) High teicoplanin uptake by human neutrophils. Chemotherapy 34:248–255

    PubMed  CAS  Google Scholar 

  113. Lanao JM, Dominguez Gil A, Macias JG et al (1980) The influence of ascites on the pharmacokinetics of amikacin. Int J Clin Pharmacol 18:57–61

    CAS  Google Scholar 

  114. Dull WL, Alexander MR, Kasik JE (1979) Bronchial secretion levels of amikacin. Antimicrob Agents Chemother 16:767–771

    PubMed  CAS  Google Scholar 

  115. Bermudez RH, Lugo A, Ramirez Ronda CH et al (1981) Amikacin sulfate levels inhuman serum and bile. Antimicrob Agents Chemother 19:352–354

    PubMed  CAS  Google Scholar 

  116. Yogev R, Kolling WM (1981) Intraventricular levels of amikacin after intravenous administration. Antimicrob Agents Chemother 20:583–586

    PubMed  CAS  Google Scholar 

  117. Hary L, Smail A, Ducroix JP et al (1991) Pharmacokinetics and ascitic fluid penetration of piperacillin in cirrhosis. Fundam Clin Pharmacol 5:789–795

    Article  PubMed  CAS  Google Scholar 

  118. Mouton Y, Caillaux M, Deboscker Y et al (1985) Etude de la diffusion bronchique de la piperacilline chez dix-huit patients de reanimation. Pathol Biol (Paris) 33:359–362

    PubMed  CAS  Google Scholar 

  119. Brogard JM, Jehl F, Blickle JF et al (1990) Biliary pharmacokinetic profile of piperacillin: experimental data and evaluation in man. Int J Clin Pharmacol 28:462–470

    CAS  Google Scholar 

  120. Gerding DN, Hitt JA (1989) Tissue penetration of the new quinolones in humans. Rev Infect Dis 11:5s1046–1057

    Google Scholar 

  121. Fong IW, Ledbetter WH, Vandenbroucke AC et al (1986) Ciprofloxacin concentrations in bone and muscle after oral dosing. Antimicrob Agents Chemother 29:405–408

    PubMed  CAS  Google Scholar 

  122. Reid TM, Gould IM, Golder D et al (1989) Respiratory tract penetration of ciprofloxacin. Am J Med 87:60s–61s

    Article  PubMed  CAS  Google Scholar 

  123. Joseph J, Vaughan LM, Basran GS (1994) Penetration of intravenous and oral ciprofloxacin into sterile and empyemic human pleural fluid. Ann Pharmacother 28:313–315

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this paper

Cite this paper

Palazzo, M. (2006). An overview of antibiotic pharmacokinetics. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/88-470-0407-1_12

Download citation

  • DOI: https://doi.org/10.1007/88-470-0407-1_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0406-1

  • Online ISBN: 978-88-470-0407-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics