Skip to main content

Modelling the formation of capillaries

  • Chapter
Complex Systems in Biomedicine

Abstract

The aim of this chapter is to describe models recently developed to simulate the formation of vascular networks which mainly occurs through two different processes: vasculogenesis and angiogenesis.

The former consists in the aggregation and organisation of endothelial cells dispersed in a given environment, the latter in the formation of new vessels sprouting from an existing vessel.

The results obtained by the use of the mathematical models are compared with experimental results in vitro and in vivo. The chapter also describes the effects of the environment on network formation and investigates the possibility of governing the network structure through the use of suitably placed chemoattractants and chemorepellents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcón, T., Byrne, H.M., Maini, P.K.: Towards whole-organ modelling of tumour growth. Prog. in Biophys. Biol. 85, 451–472 (2004)

    Article  CAS  Google Scholar 

  2. Ambrosi, D., Bussolino, F., Preziosi, L.: A review of vasculogenesis models. J. Theor. Med. 6, 1–19 (2005)

    Article  Google Scholar 

  3. Ambrosi, D., Gamba, A., Serini, G.: Cell directional persistence and chemotaxis in vascular morphogenesis. Bull. Math. Biol. 66, 1851–1873 (2004)

    Article  PubMed  CAS  Google Scholar 

  4. Ambrosi, D., Mollica, F.: Mechanical models in tumour growth. In: Preziosi, L. (ed.): Cancer modelling and simulation. Boca Raton, FL: Chapman & Hall/CRC 2003, pp. 121–145

    Google Scholar 

  5. Bellomo, N., De Angelis, E., Preziosi, L.: Multiscale modeling and mathematical problems related to tumour evolution and medical therapy. J. Theor. Med. 5, 111–136 (2004)

    Article  Google Scholar 

  6. Bertuzzi, A., D’Onofrio, A., Fasano, A., Gandolfi, A.: Regression and regrowth of tumour cords following single-dose anticancer treatment. Bull. Math. Biol. 65, 903–931 (2003)

    Article  PubMed  CAS  Google Scholar 

  7. Bussolino, F., Arese, M., Audero, E., Giraudo, E., Marchiò, S., Mitola, S., Primo, L., Serini, G.: Biological aspects of tumour angiogenesis. In: Preziosi, L. (ed.): Cancer modelling and simulation. Boca Raton, FL: Chapman & Hall/CRC 2003, pp. 1–22

    Google Scholar 

  8. Chaplain, M.A.J., Anderson, A.R.A.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)

    Article  PubMed  Google Scholar 

  9. Coniglio, A., de Candia, A., Di Talia, S., Gamba, A.: Percolation and Burgers’ dynamics in a model of capillary formation. Phys. Rev. E 69, 051910, 10p. (2004)

    Article  CAS  Google Scholar 

  10. Folkman, J., Haudenschild, C.: Angiogenesis in vitro. Nature 288, 551–556 (1980)

    Article  PubMed  CAS  Google Scholar 

  11. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118101 (2003)

    Article  PubMed  CAS  Google Scholar 

  12. Holmes, M., Sleeman, B.:A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J. Theor. Biol. 202, 95–112 (2000)

    Article  PubMed  CAS  Google Scholar 

  13. Kowalczyk, R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305,566–588 (2005)

    Article  Google Scholar 

  14. Kowalczyk, R., Gamba, A., Preziosi, L.: On the stability of homogeneous solutions to some aggregation models. Discrete Contin. Dyn. Syst. B 4, 203–220 (2004)

    Google Scholar 

  15. Lanza, V., Ambrosi, D., Preziosi, L.: Exogenous control of vascular network formation in vitro. Preprint. Turin: Dip. di Mathematica, Politecnico di Torino 2005

    Google Scholar 

  16. Levine, H., Sleeman, B., Modelling tumour-induced angiogenesis. In: Preziosi, L. (ed.): Cancer modelling and simulation. Boca Raton, FL: Chapman & Hall/CRC 2003, pp. 147–184

    Google Scholar 

  17. Levine, H., Sleeman, B., Nilsen-Hamilton, M.: Mathematical modeling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheoretica 44, 271–282 (1996)

    Article  PubMed  CAS  Google Scholar 

  19. Mantzaris, N., Webb, S., Othmer, H.G.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49, 111–187 (2004)

    Article  PubMed  Google Scholar 

  20. McDougall, S.R., Anderson, A.R., Chaplain, M.A.J., Sherratt, J.A.: Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. Meinhardt, H.: Morphogenesis of lines and nets. Differentiation 6, 117–123 (1976)

    Article  PubMed  CAS  Google Scholar 

  22. Meinhardt, H.: Models of biological pattern formation. London: Academic 1982

    Google Scholar 

  23. Meinhardt, H.: Biological pattern formation as a complex dynamic phenomenon. Internat. J. Bifurcation Chaos Appl. Sci. Engrg. 7, 1–26 (1997)

    Article  Google Scholar 

  24. Merks, R.M.H., Newman, S.A., Glazier, J.A.: Cell-oriented modeling of in vitro capillary development. In: Sloot, P. et al. (eds.): Cellular automata. (Lecture Notes in Comput. Sci. 3305) Berlin: Springer 2004, pp. 425–434

    Google Scholar 

  25. Murray, J.D., Manoussaki, D., Lubkin, S.R., Vernon, R.B.: A mechanical theory of in vitro vascular network formation. In: Little, C. et al. (eds.): Vascular morphogenesis: in vivo, in vitro, in mente. Boston: Birkhäuser Boston 1998, pp. 147–172

    Google Scholar 

  26. Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., Betsholtz, C., Shima, D.: Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes and Devel. 16, 2684–2698 (2002)

    Article  CAS  Google Scholar 

  27. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)

    Article  PubMed  CAS  Google Scholar 

  28. Sleeman, B., Wallis, I.P.: Tumour induced angiogenesis as a reinforced random walk: modelling capillary network formation without endothelial cell proliferation. Math. Comput. Modelling 36, 339–358 (2002)

    Article  Google Scholar 

  29. Stephanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Modelling 41, 1137–1156 (2005)

    Article  Google Scholar 

  30. Tosin, A., Ambrosi, D., Preziosi, L.: Mechanics and chemotaxis in the morphogenesis of vascular networks. Preprint Turin: Dip. di Mathematica, Politecnico di Torino 2005

    Google Scholar 

  31. Vailhé, B., Vittet, D., Feige, J.-J.: In vitro models of vasculogenesis and angiogenesis. Lab. Investig. 81, 439–452 (2001)

    PubMed  Google Scholar 

  32. Vailhé, B., Lecomte, M., Wiernsperger, N., Tranqui, L.: The formation of tubular structures by endothelial cells is under the control of fibrinolysis and mechanical factors. Angiogenesis 2, 331–344 (1998)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Preziosi, L., Astanin, S. (2006). Modelling the formation of capillaries. In: Quarteroni, A., Formaggia, L., Veneziani, A. (eds) Complex Systems in Biomedicine. Springer, Milano. https://doi.org/10.1007/88-470-0396-2_4

Download citation

Publish with us

Policies and ethics