Skip to main content

Mathematical modelling of tumour growth and treatment

  • Chapter
Complex Systems in Biomedicine

Abstract

We review some of the models that have been proposed to describe tumour growth and treatment. A first class is that of models which include the analysis of stresses. Here the question of blood vessel collapse in vascular tumours is treated briefly. Results on the existence of radially- and of non-radially-symmetric solutions are illustrated together with an investigation of their stability. Two sections are devoted to tumour cords (growing directly around a blood vessel), highlighting basic facts that are indeed important in the evolution of solid tumours in the presence of necrotic regions. Tumour cords are also taken as an example to deal with certain aspects of tumour treatment. The latter subject is too large to be treated exhaustively but a brief account of the mathematical modelling of hyperthermia is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcón, T., Byrne, H.M., Maini, P.K.: Towards whole-organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85, 451–472 (2004)

    Article  PubMed  CAS  Google Scholar 

  2. Ambrosi, D., Mollica, F.: Mechanical models in tumour growth. In: Preziosi, L. (ed.): Cancer modelling and simulation. Boca Raton, FL: Chapman & Hall/CRC 2003, pp. 121–145

    Google Scholar 

  3. Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth. Math. Models Methods Appl. Sci. 12, 737–754 (2002)

    Article  Google Scholar 

  4. Anderson, A.R.: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22, 163–186 (2005)

    Article  PubMed  Google Scholar 

  5. Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M.: Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129–154 (2000)

    Google Scholar 

  6. Arakelyan, L., Vainstein, V., Agur, Z.: A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth. Angiogenesis 5, 203–214 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. Araujo, R.P., McElwain, D.L.S.: New insights into vascular collapse and growth dynamics in solid tumors. J. Theor. Biol. 228, 335–346 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. Araujo, R.P., McElwain, D.L.S.: A linear-elastic model of anisotropic tumour growth. European J. Appl. Math. 15, 365–384 (2004)

    Article  Google Scholar 

  10. Baxter, L.T., Jain, R.K.: Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 37, 77–104 (1989)

    Article  PubMed  CAS  Google Scholar 

  11. Bazaliy, B., Friedman, A.: Global existence and asymptotic stability for an elliptic-parabolic free boundary problem: an application to a model of tumor growth. Indiana Univ. Math. J. 52, 1265–1303 (2003)

    Article  Google Scholar 

  12. Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. Surveys Math. Indust. 8, 271–312 (1999)

    Google Scholar 

  13. Bellomo, N., De Angelis, E., Preziosi, L.: Multiscale modeling and mathematical problems related to tumour evolution and medical therapy. J. Theor. Med. 5, 111–136 (2003)

    Article  Google Scholar 

  14. Bertuzzi, A., Gandolfi, A.: Cell kinetics in a tumour cord. J. Theor. Biol. 204, 587–599 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. Bertuzzi, A., Fasano, A., Gandolfi, A., Marangi, D.: Cell kinetics in tumour cords studied by a model with variable cell cycle length. Math. Biosci. 177/178, 103–125 (2002)

    Article  Google Scholar 

  16. Bertuzzi, A., d’Onofrio, A., Fasano, A., Gandolfi, A.: Regression and regrowth of tumour cords following single-dose anticancer treatment. Bull. Math. Biol. 65, 903–931 (2003)

    Article  PubMed  CAS  Google Scholar 

  17. Bertuzzi, A., Fasano, A., Gandolfi, A.: A free boundary problem with unilateral constraints describing the evolution of a tumor cord under the influence of cell killing agents. SIAM J. Math. Anal. 36, 882–915 (2004)

    Article  Google Scholar 

  18. Bertuzzi, A., Fasano, A., Gandolfi, A.: A mathematical model for tumor cords incorporating the flow of interstitial fluid. Math. Models Methods Appl. Sci. 15, 1735–1777 (2005)

    Article  Google Scholar 

  19. Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C.: Interstitial pressure and extracellular fluid motion in tumour cords. Math. Biosci. Engng. 2, 445–460 (2005)

    Google Scholar 

  20. Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C.: Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords. J. Theor. Biol., to appear.

    Google Scholar 

  21. Bloor, M.I.G., Wilson, M.J.: The non-uniform spatial development of a micrometastasis. J. Theor. Med. 2, 55–71 (1999)

    Google Scholar 

  22. Breward, C.J.W., Byrne, H.M., Lewis, C.E.: The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45, 125–152 (2002)

    Article  PubMed  CAS  Google Scholar 

  23. Breward, C.J.W., Byrne, H.M., Lewis, C.E.: A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65, 609–640 (2003)

    Article  PubMed  Google Scholar 

  24. Burton, A.C.: Rate of growth of solid tumours as a problem of diffusion. Growth 30, 157–176 (1966)

    PubMed  CAS  Google Scholar 

  25. Byrne, H.M., Chaplain, M.A.J.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130, 151–181 (1995)

    Article  PubMed  CAS  Google Scholar 

  26. Byrne, H.M., Chaplain, M.A.J.: Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135, 187–216 (1996)

    Article  PubMed  CAS  Google Scholar 

  27. Byrne, H.M., Chaplain, M.A.J.: Free boundary value problems associated with the growth and development of multicellular spheroids. European J. Appl. Math. 8, 639–658 (1997)

    Article  Google Scholar 

  28. Byrne, H.M., King, J.R., McElwain, D.L.S., Preziosi, L.: A two-phase model of solid tumour growth. Appl. Math. Lett. 16, 567–573 (2003)

    Article  Google Scholar 

  29. Byrne, H.M., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)

    Article  PubMed  Google Scholar 

  30. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003)

    Article  PubMed  Google Scholar 

  31. Cui, S., Friedman, A.: Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164, 103–137 (2000)

    Article  PubMed  CAS  Google Scholar 

  32. De Angelis, E., Preziosi, L.: Advection-diffusion models for solid tumour evolution in vivo and related free boundary problems. Math. Models Methods Appl. Sci. 10, 379–407 (2000)

    Article  Google Scholar 

  33. Deuflhard, P., Hochmuth, R.: Multiscale analysis of thermoregulation in the human microvascular system. Math. Methods Appl. Sci. 27, 971–989 (2004)

    Article  Google Scholar 

  34. Dyson, J., Villella-Bressan, R., Webb, G.: The steady state of a maturity structured tumor cord cell population. Discrete Contin. Dyn. Syst. Ser. B 4, 115–134 (2004)

    Google Scholar 

  35. Dyson, J., Villella-Bressan, R., Webb, G.F.: The evolution of a tumor cord cell population. Commun. Pure Appl. Anal. 3, 331–352 (2004)

    Google Scholar 

  36. Folkman, J.: Tumor angiogenesis. Adv. Cancer Res. 43, 175–203 (1985)

    Article  PubMed  CAS  Google Scholar 

  37. Fontelos, M.A., Friedman, A.: Symmetry-breaking bifurcations of free boundary problems in three dimensions. Asymptot. Anal. 35, 187–206 (2003)

    Google Scholar 

  38. Forrester, H.B., Vidair, C.A., Albright, N., Ling, C.C., Dewey, W.C.: Using computerized video time lapse for quantifying cell death of X-irradiated rat embryo cells transfected with c-myc or c-Ha-ras. Cancer Res. 59, 931–939 (1999)

    PubMed  CAS  Google Scholar 

  39. Fowler, J.F.: The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694 (1989)

    Article  PubMed  CAS  Google Scholar 

  40. Friedman, A., Reitich, F.: Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38, 262–284 (1999)

    Article  PubMed  CAS  Google Scholar 

  41. Friedman, A., Reitich, F.: Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Amer. Math. Soc. 353, 1587–1634 (2001)

    Article  Google Scholar 

  42. Friedman, A., Hu, B., Velasquez, J.J.L.: A Stefan problem for a protocell model with symmetry-breaking bifurcations of analytic solutions. Interfaces Free Bound. 3, 143–199 (2001)

    Article  Google Scholar 

  43. Gatenby, R.A., Gawlinski, E.T.: A reaction-diffusion model of cancer invasion. Cancer Res. 56, 5745–5753 (1996)

    PubMed  CAS  Google Scholar 

  44. Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Studies Appl. Math. 52, 317–340 (1972)

    Google Scholar 

  45. Greenspan, H.P.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242 (1976)

    Article  PubMed  CAS  Google Scholar 

  46. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: a dynamic theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)

    PubMed  CAS  Google Scholar 

  47. Hanzawa, E.I.: Classical solutions of the Stefan problem. Tohoko Math. J. (2) 33, 297–335 (1981)

    Google Scholar 

  48. Hirst, D.G., Denekamp, J.: Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42 (1979)

    PubMed  CAS  Google Scholar 

  49. Hochmuth, R., Deuflhard, P.: Multiscale analysis for the bio-heat-transfer equation — the nonisolated case. Math. Models Methods Appl. Sci. 14, 1621–1634 (2004)

    Article  Google Scholar 

  50. Jackson, T.L.: Vascular tumor growth and treatment: consequences of polyclonality, competition and dynamic vascular support. J. Math. Biol. 44, 201–226 (2002)

    Article  PubMed  Google Scholar 

  51. Jackson, T.L.: Intracellular accumulation and mechanism of action of Doxorubicin in a spatio-temporal tumor model. J. Theor. Biol. 220, 201–213 (2003)

    Article  PubMed  CAS  Google Scholar 

  52. Jackson, T.L., Byrne, H.M.: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38 (2000)

    Article  PubMed  CAS  Google Scholar 

  53. Jain, R.K.: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005)

    Article  PubMed  CAS  Google Scholar 

  54. Jain, R.K., Wei, J.: Dynamics of drug transport in solid tumors: distributed parameter model. J. Bioeng. 1, 313–329 (1977)

    Google Scholar 

  55. Krogh, A.: The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52, 409–415 (1919)

    PubMed  CAS  Google Scholar 

  56. Lankelma, J., Fernandez Luque, R., Dekker, H., Pinedo, H.M.: Simulation model of doxorubicin activity in islets of human breast cancer cells. Biochim. Biophys. Acta 1622, 169–178 (2003)

    PubMed  CAS  Google Scholar 

  57. Lubkin, S.R., Jackson, T.A.: Multiphase mechanics of capsule formation in tumors. J. Biomech. Eng. 124, 237–243 (2002)

    Article  PubMed  CAS  Google Scholar 

  58. Majno, G., Joris, I.: Apoptosis, oncosis and necrosis. An overview of cell death. Amer. J. Pathol. 146, 3–15 (1995)

    CAS  Google Scholar 

  59. Moore, J.V., Hopkins, H.A., Looney, W.B.: Dynamic histology of a rat hepatoma and the response to 5-fluorouracil. Cell Tissue Kinet. 13, 53–63 (1980)

    PubMed  CAS  Google Scholar 

  60. Moore, J.V., Hopkins, H.A., Looney, W.B.: Tumour-cord parameters in two rat hepatomas that differ in their radiobiological oxygenation status. Radiat. Environ. Biophys. 23, 213–222 (1984)

    Article  PubMed  CAS  Google Scholar 

  61. Moore, J.V., Hasleton, P.S., Buckley, C.H.: Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br. J. Cancer 51, 407–413 (1985)

    PubMed  CAS  Google Scholar 

  62. Mueller-Klieser, W.: Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol. 113, 101–122 (1987)

    Article  PubMed  CAS  Google Scholar 

  63. Netti, P.A., Jain, R.K.: Interstitial transport in solid tumours. In: Preziosi, L. (ed.): Cancer modelling and simulation. Boca Raton, FL: Chapman & Hall/CRC 2003, pp. 51–74

    Google Scholar 

  64. Padera, T.P., Stoll, B.R., Tooredman, J.B., Capen, D., di Tomaso, E., Jain, R.K.: Cancer cells compress intratumour vessels. Nature 427, 695 (2004)

    Article  PubMed  CAS  Google Scholar 

  65. Rajagopal, K.R., Tao, L.: Mechanics of mixtures. River Edge, NJ: World Scientific 1995

    Google Scholar 

  66. Rubinow, S.I.: A maturity-time representation for cell populations. Biophys. J. 8, 1055–1073 (1968)

    Article  PubMed  CAS  Google Scholar 

  67. Scalerandi, M., Capogrosso Sansone, D., Benati, C., Condat, C.A.: Competition effects in the dynamics of tumor cords. Phys. Rev. E 65, 051918(1–10) (2002)

    Article  CAS  Google Scholar 

  68. Sena, G., Onado, C., Cappella, P., Montalenti, F., Ubezio, P.: Measuring the complexity of cell cycle arrest and killing of drugs: kinetics of phase-specific effects induced by taxol. Cytometry 37, 113–124 (1999)

    Article  PubMed  CAS  Google Scholar 

  69. Swanson, K.R., Bridge, G., Murray, J.D., Alvord, E.C.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003)

    Article  PubMed  Google Scholar 

  70. Tannock, I.F.: The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273 (1968)

    PubMed  CAS  Google Scholar 

  71. Ward, J.P., King, J.R.: Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math. Biosci. 181, 177–207 (2003)

    Article  PubMed  CAS  Google Scholar 

  72. Webb, G.F.: The steady state of a tumor cord cell population. J. Evol. Equat. 2, 425–438 (2002)

    Article  Google Scholar 

  73. Wein, L.M., Cohen, J.E., Wu, J.T.: Dynamic optimization of a linear-quadratic model with incomplete repair and volume-dependent sensitivity and repopulation. Int. J. Radiat. Oncol. Biol. Phys. 47, 1073–1083 (2000)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Fasano, A., Bertuzzi, A., Gandolfi, A. (2006). Mathematical modelling of tumour growth and treatment. In: Quarteroni, A., Formaggia, L., Veneziani, A. (eds) Complex Systems in Biomedicine. Springer, Milano. https://doi.org/10.1007/88-470-0396-2_3

Download citation

Publish with us

Policies and ethics