Skip to main content

Conclusions

Paediatric septic shock results in myocardial dysfunction, abnormalities of vascular tone and permeability and inadequate oxygen delivery. After fluid resuscitation has been completed for the initial hyperdynamic/low systemic vascular resistance phase, in many children the haemodynamic profile may change to one of low cardiac output with high systemic vascular resistance. This progression is of considerable importance to paediatric intensivists, because it necessitates a change in treatment strategy from vigorous fluid resuscitation and administration of α-agonist vasopressor medications to relative fluid restriction, and perhaps the administration of inotropic medications to increase myocardial contractility and vasodilators with the aim of reducing afterload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pollard AJ, Britto J, Nadel S et al (1999) Emergency management of meningococcal disease. Arch Dis Child 80:290–296

    PubMed  CAS  Google Scholar 

  2. Dellinger RP (2003) Cardiovascular management of septic shock. Crit Care Med 31:946–955

    Article  PubMed  Google Scholar 

  3. Tabbut S (2001) Heart failure in pediatric septic shock: utilizing inotropic support. Crit Care Med 29:S231–S236

    Article  Google Scholar 

  4. Jardin F, Brunney D, Auvert B et al (1990) Sepsis-related cardiogenic shock. Crit Care Med 18:1055–1060

    Article  PubMed  CAS  Google Scholar 

  5. Parker MM, Shelhamer JH, Bacharach SL et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    PubMed  CAS  Google Scholar 

  6. Parrillo JE, Burch C, Shelhamer JH et al (1985) A circulating myocardial depressant substance in humans with septic shock: septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    Article  PubMed  CAS  Google Scholar 

  7. Cain BS, Meldrum DR, Dinarello CA et al (1999) Tumor necrosis factor-a and interleukin-1b synergistically depress human myocardial function. Crit Care Med 27:1309–1318

    Article  PubMed  CAS  Google Scholar 

  8. Finkel MS, Oddis CV, Jacob TD et al (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    Article  PubMed  CAS  Google Scholar 

  9. Thiru Y, Pathan N, Bignall S et al (2000) A myocardial cytotoxic process is involved in the cardiac dysfunction of meningococcal septic shock. Crit Care Med 28: 2979–2983

    Article  PubMed  CAS  Google Scholar 

  10. Silverman H, Penaranda R, Orens JB et al (1993) Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21:31–39

    Article  PubMed  CAS  Google Scholar 

  11. Ognibene FP, Parker MM, Natanson C et al (1988) Depressed left ventricular performance: response to volume infusion in patients with sepsis and septic shock. Chest 93:903–910

    PubMed  CAS  Google Scholar 

  12. Ceneviva G, Paschall A, Maffei F et al (1998) Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 102:e19

    Article  PubMed  CAS  Google Scholar 

  13. Cholley BP, Lang RM, Berger DS et al (1995) Alterations in systemic arterial mechanical properties during septic shock: role of fluid resuscitation. Am J Physiol 269:H375–H384

    PubMed  CAS  Google Scholar 

  14. Feltes TF, Pignatelli R, Kleinert S et al (1994) Quantitated left ventricular systolic mechanics in children with septic shock utilizing noninvasive wall-stress analysis. Crit Care Med 22:1647–1658

    Article  PubMed  CAS  Google Scholar 

  15. Colan SD, Borow KM, Newmann A (1984) Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load independent index of myocardial contractility. J AmColl Cardiol 4:715–724

    Article  CAS  Google Scholar 

  16. Dellinger RP, Carlet JM, Masur H et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873

    Article  PubMed  Google Scholar 

  17. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 346:1368–1377

    Article  Google Scholar 

  18. Carcillo JA, Felds AI, and the Task Force Committee members (2002) Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med 30: 1365–1378

    Article  PubMed  Google Scholar 

  19. Carcillo JA, Davis AL, Zaritsky A (1991) Role of early fluid resuscitation in pediatric septic shock. JAMA 266:1242–1245

    Article  PubMed  CAS  Google Scholar 

  20. Bhan NT, Phuong CXT, Kneen R et al (2001) Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin Infect Dis 32:204–213

    Article  Google Scholar 

  21. Meadows D, Edwards JD, Wilkins RG et al (1988) Reversal of intractable septic shock with norepinephrine therapy. Crit Care Med 16:663–666

    Article  PubMed  CAS  Google Scholar 

  22. Bollaert PE, Bauer P, Audibert G et al (1990) Effects of epinephrine on hemodynamics and oxygen metabolism in dopamine-resistant septic shock. Chest 98:949–953

    PubMed  CAS  Google Scholar 

  23. O’Brian A, Clapp L, Singer M (2002) TTerlipressin for norepinephrine-resistant septic shock. Lancet 359:1209–1210

    Article  Google Scholar 

  24. Yunge M, Petros A (2000) Angiotensin for septic shock unresponsive to noradrenaline. Arch Dis Child 82:388–389

    Article  PubMed  CAS  Google Scholar 

  25. Holmes CL, Patel BM, Russell JA et al (2001) Physiology of vasopressin relevant to management of septic shock. Chest 120:989–1002

    Article  PubMed  CAS  Google Scholar 

  26. Sharshar T, Carlier R, Blanchard A et al (2002) Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med 30:497–500

    Article  PubMed  CAS  Google Scholar 

  27. Matok I, Leibovitch L, Vardi A et al (2004) Terlipressin as rescue therapy for intractable hypotension during neonatal septic shock. Pediatr Crit Care Med 5:116–118

    Article  PubMed  Google Scholar 

  28. Rodriguez-Nunez A, Fernandez-Sanmartin M, Martinon-Torres F et al (2004) Terlipressin for catecholamine-resistant septic shock in children. Intensive Care Med 30:477–480

    Article  PubMed  Google Scholar 

  29. Peters MJ, Booth RA, Petros AJ (2004) Terlipressin bolus induces systemic vasoconstriction in septic shock. Pediatr Crit Care Med 5:112–115

    Article  PubMed  Google Scholar 

  30. Perkin RM, Levin DL, Webb R et al (1982) Dobutamine: a hemodynamic evaluation in children with shock. Pediatrics 100:977–983

    Article  CAS  Google Scholar 

  31. Habib DM, Padbury JF, Anas NG et al (1992) Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients. Crit Care Med 20:601–608

    Article  PubMed  CAS  Google Scholar 

  32. Martinez AM, Padbury JF, Thio S (1992) Dobutamine pharmacokinetics and pharmacodynamics and cardiovascular responses in critically ill neonates. Pediatrics 89:47–51

    PubMed  CAS  Google Scholar 

  33. Sorenson G, Ramamoorthy C, Lynn A et al (1993) Hemodynamic effects of amrinone and colloid administration in children following cardiac surgery. J Cardiothorac Anesth 7:560–565

    Article  Google Scholar 

  34. Bailey J, Miller B, Kanter K et al (1997) A comparison of the hemodynamic effects of amrinone and sodium nitroprusside in infants after cardiac surgery. Anesth Analg 84: 294–298

    Article  PubMed  CAS  Google Scholar 

  35. Barton P, Garcia J, Kouatli A et al (1996) Hemodynamic effects of i.v. milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled, intervention study. Chest 109:1302–1312

    PubMed  CAS  Google Scholar 

  36. Irazuzta JE, Pretzlaff RK, Rowin ME (2001) Amrinone in pediatric refractory shock: an open label pharmacodynamic study. Pediatr Crit Care Med 2: 24–28

    Article  PubMed  Google Scholar 

  37. Ringe HI, Varnholt V, Gaedicke G (2003) Cardiac rescue with enoximone in volume and catecholamine refractory septic shock. Pediatr Crit Care Med 4:471–475

    Article  PubMed  Google Scholar 

  38. Kumar A, Thota V, Dee L et al (1996) Tumor necrosis factor alpha and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183: 949–958

    Article  PubMed  CAS  Google Scholar 

  39. Kumar A, Kosuri R, Kandula P et al (1999) Effects of epinephrine and amrinone on contractility and cyclic adenosine monophosphate generation of tumor necrosis factor alpha-exposed cardiac myocytes. Crit Care Med 27: 286–292

    Article  PubMed  CAS  Google Scholar 

  40. Keely SR, Bohn DJ (1988) The use of inotropic and afterload-reducing agents in neonates. Clin Perinatol 15: 467–489

    Google Scholar 

  41. Cardenas-Rivero N, Chernow B, Stoiko MA et al (1989) Hypocalcemia in critically ill children. J Pediatr 114: 946–951

    Article  PubMed  CAS  Google Scholar 

  42. Hatherill M, Tibby SM, Hilliard T et al (1999) Adrenal insufficiency in septic shock. Arch Dis Child 80:51–55

    Article  PubMed  CAS  Google Scholar 

  43. Joosten KFM, DE Kleijn ED, Westerterp M et al (2000) Endocrine and metabolic responses in children with meningococcal sepsis: striking differences between survivors and nonsurvivors. J Clin Endocrinol Metab 85:3746–3753

    Article  PubMed  CAS  Google Scholar 

  44. Kleijn DE, Joosten KFM, Van Rijn B et al (2002) Low serum cortisol in combination with high adrenocorticotrophic hormone concentrations are associated with poor outcome in children with severe meningococcal disease. Pediatr Infect Dis J 21:330–333

    Article  PubMed  Google Scholar 

  45. Goldman AP, Kerr SJ, Butt W et al (1997) Extracorporeal support for intractable cardiorespiratory failure due to meningococcal disease. Lancet 349:466–469

    Article  PubMed  CAS  Google Scholar 

  46. Meyer DM, Jesson ME, Extracorporeal Life Support Organization (1997) Results of extracorporeal membrane oxygenation in children with sepsis. Ann Thorac Surg 63: 756–761

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this paper

Cite this paper

Zobel, G., Rödl, S., Grubbauer, H.M. (2005). Haemodynamic support of paediatric patients in septic shock. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/88-470-0351-2_53

Download citation

  • DOI: https://doi.org/10.1007/88-470-0351-2_53

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0288-3

  • Online ISBN: 978-88-470-0351-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics