Skip to main content

Sepsis and Organ(s) Dysfunction — Key Points, Reflections, and Perspectives

  • Chapter
Intensive and Critical Care Medicine
  • 757 Accesses

Abstract

Sepsis is one of the main problems in medicine due to its complexity from pathophysiology, clinical, and therapeutic standpoints. Although several definitions have been proposed for this syndrome, it can in general be assumed that it represents the clinical manifestation of a system response of the body to infection or to an inflammatory-associated acute disease [1,2]. Despite advances in medical practice, sepsis, severe sepsis, and septic shock, associated with different grading of organ(s) dysfunction/failure, are conditions that significantly limit quality of life and the ultimate survival of intensive care unit (ICU)patients. In any case, the health cost implications remain exorbitant [3]. Mortality rates as a result of sepsis are associated with a pattern characterized by progressive dysfunction/failure of non-pulmonary organ systems and, in particular, worsening neurologic, coagulation, and renal dysfunction over the first three days. Although initial pulmonary dysfunction is common in patients with sepsis syndrome, it is not associated with an increased mortality rate [4]. In five recent clinical trials that enrolled a total of 5661 patients with severe sepsis — the criteria being evidence of infection, systemic inflammatory response syndrome (SIRS), and at least one organ dysfunction/hypoperfusion — the incidences of septic shock ranged from 52 to 71% in the group of patients with severe sepsis. The mean was 58% [59]. A recent study used the International Classification of Diseases (ICD) nine hospital diagnostic codes for infection and acute organ dysfunction — to estimate 751 000 cases of severe sepsis per annum in the United States [3]. According to this data, septic shock would, therefore, be predicted to occur annually in 435 580 patients in the US. Mortality rate is a consequence of one or more factors such as:age, immunodepression, presence of diseases and/or chronic failure of one or multiple organ system dysfunctions and/or failure [10, 11]. Pathophysiologic mechanisms are basically related to Gram-negative bacteria endotoxin [12], but also Gram-positive micro-organisms, viruses, and mycetes, which are supposedly responsible for the local and systemic release of several mediators that, in turn, might be responsible for the organic response to infection, characterised by cardiovascular instability, hyperthermia, hypothermia, leukocytes, and coagulation alterations as well as by involvement of one or multiple organs [13]. The term sepsis is related to the concept of multiple organ dysfunction syndrome (MODS), which is frequently identified with the end result of infection, although it has been shown that septic syndrome is not specific to infection and can also originate as a result of a variety of non-infectious stimuli such as pancreatitis, burns, and trauma [14]. The American College of Chest Physicians proposed new definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis [15]. Indeed, although remarkable progress has been achieved in defining the pathophysiology of sepsis, the terminology associated with research in this field has remained confusing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beal AL, Cerra FB (1994) Multiple organ failure syndrome in the 1990s: systemic inflammatory response and organ dysfunction. JAMA 271:226–233

    Article  PubMed  CAS  Google Scholar 

  2. Vincent JL, Bihari D (1992) Sepsis, severe sepsis or sepsis syndrome: need for clarification. Int Care Med 18:255–257

    Article  CAS  Google Scholar 

  3. Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  PubMed  CAS  Google Scholar 

  4. Russell JA, Singer J, Bernard GR et al (2000) Changing pattern of organ dysfunction in early human sepsis is related to mortality. Crit Care Med 10:3405–3411

    Article  Google Scholar 

  5. Opal SM, Fisher CJ Jr, Dhainaut JF et al (1997) Confirmatory Interleukin-1 receptor antagonist trial in severe sepsis. A phase III, randomized, double blind, placebocontrolled, multicenter trial. Crit Care Med 25:1115–1124

    Article  PubMed  CAS  Google Scholar 

  6. Pittet D, Hrbarth S, Suter PM et al (1999) Efficacy and safety of recombinant human activated protein C for severe sepsis. Am J Respir Crit Care Med 160:852–857

    PubMed  CAS  Google Scholar 

  7. Bernard G, Vincent JL, Laterre PF et al (2001) Efficacy and safety of humans rhAPC for severe sepsis. N Engl J med 344:749–762

    Article  Google Scholar 

  8. Warren BL, Eid A, Singer P et al (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: A randomised controlled trial. JAMA 2896:1869–1878

    Article  Google Scholar 

  9. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  10. Tran DD, Groenvald ABJ, van der Meulen J et al (1990) Age, chronic disease, sepsis, organ system failure, and mortality in a medical intensive care unit. Crit Care Med 18:474–479

    Article  PubMed  CAS  Google Scholar 

  11. Bone RC (1993) The systemic inflammatory response syndrome (SIRS). In: Gullo A (ed) Anesthesia, Pain, Intensive Care and Emergency (A.P.I.C.E.). Springer, Milan pp 561–571

    Google Scholar 

  12. Danner RL, Elin RJ, Hosseini JM et al (1991) Endotoxemia in human septic shock. Chest 99:169–175

    PubMed  CAS  Google Scholar 

  13. Deitch EA (1992) Multiple Organ Failure: pathophysiology and potential future therapy. Ann Surg 216:117–134

    Article  PubMed  CAS  Google Scholar 

  14. Allardyce DB (1987) Incidence of necrotizing pancreatitis and factors related to mortality. Am J Surg 216:117–134

    Google Scholar 

  15. Anonymous (1992) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20(6):864–874

    Article  Google Scholar 

  16. Bone RC (1996) A personal experience with SIRS and MODS. Crit Care Med 24:1417–1418

    Article  PubMed  CAS  Google Scholar 

  17. Heard So, Fink MP (1991) Multiple organ failure syndrome: Part1: epidemiology, prognosis and pathophysiology. J Intens Care Med 6:279–294

    Google Scholar 

  18. Anonymous (1993) Centers for Disease Control and Prevention. National Center for Health Statistics: Mortality Patterns — United States, 1990. Monthly Vital Statistics Report 41:45

    Google Scholar 

  19. Parker MM, Parrillo JE (1983) Septic Shock: Hemodynamics and pathogenesis. JAMA 250:3324–3327

    Article  PubMed  CAS  Google Scholar 

  20. Kuchroo VK, Das MP, Browun JA et al (1995) B7-1 and B7-2 co-stimulatory molecules activate differentially the Th1/Th2 developmental pathways. Cell 80:707–718

    Article  PubMed  CAS  Google Scholar 

  21. Hollenberg SM, Cunnion RE, Parrillo JE (1992) Effect of septic serum on vascular smooth muscle: in vitro studies using aortic rings. Crit Care Med 20:993–998

    Article  PubMed  CAS  Google Scholar 

  22. Pinsky MR, Matuschak GM (1986) Cardiovascular determinants of the hemodynamic response to acute endotoxemia in the dog. J Crit Care 1:18–31

    Article  Google Scholar 

  23. Parker M, Shelhamer JH Bacharach S et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    PubMed  CAS  Google Scholar 

  24. Bone RC (1996) Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med 24:163–172

    Article  PubMed  CAS  Google Scholar 

  25. Oberholzer A, Oberholzer C, Moldawer LL (2000) Cytokine signalling — regulation of the immune response in normal and critically ill states. Crit Care Med 28:N3–N12

    Article  PubMed  CAS  Google Scholar 

  26. Bone RC (1996) Sir Isaac Newton, Sepsis, SIRS, and CARS. Crit Care Med 24:1125–1128

    Article  PubMed  CAS  Google Scholar 

  27. Bone RC (1996) Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do no know about cytokine regulation. Crit Care Med 24:163–172

    Article  PubMed  CAS  Google Scholar 

  28. Reed RL (2000) Contemporary issues with bacterial infection in the intensive care unit. Surg Clin North Am 80(3):895–909

    Article  PubMed  Google Scholar 

  29. Ruokonen E, Ilkka L, Niskanen M et al (2002) Procalcitonin and neopterin as indicators of infection inn critically ill patients. Acta Anaesthesiol Scand 46:398–404

    Article  PubMed  CAS  Google Scholar 

  30. Assicot M, Gendrel D, Carsin H et al (1993) High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 341:515–518

    Article  PubMed  CAS  Google Scholar 

  31. Giamarellos-Bourboulis EJ, Mega A, Grecka P et al () Procalcitonin: a marker to clearly differentiate systemic inflammatory response syndrome and sepsis in the critically ill patient? Intensive Care Med 2002 Sep; 28(9):1351–1356

    Article  PubMed  Google Scholar 

  32. Ugarte H, Silva E, Mercan D et al (1999) Procalcitonin used as a marker of infection in the intensive care unit. Crit Care Med Mar 27(3):498–504

    Article  CAS  Google Scholar 

  33. Claeys R, Vinken S, Spapen H et al (2002) Plasma procalcitonin and C-reactive protein in acute septic shock: clinical and biological correlates. Crit Care Med 30:757–762

    Article  PubMed  CAS  Google Scholar 

  34. Kirkpatrick CJ, Bittinger F, Klein CL et al (1996) The role of the microcirculation in multiple organ dysfunction syndrome (MODS): a review and perspectives. Virchows Arch 427:461–476

    Article  PubMed  CAS  Google Scholar 

  35. Reinhart K, Bayer O, Brunkhorst F et al (2002) Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 30:S302–S312

    Article  PubMed  CAS  Google Scholar 

  36. Duranteau J, Sitbon P, Teboul JL et al (1999) Effects of epinephrine, norepinephrine or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med 27:893–900

    Article  PubMed  CAS  Google Scholar 

  37. Li H, Forstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–254

    Article  PubMed  CAS  Google Scholar 

  38. Petros A, Lamb G, Leone A et al (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28:34–39

    PubMed  CAS  Google Scholar 

  39. Baeuerle P, Henkel T (1994) Function and activation of NF-kB in the immune system. Annu Rev Immunol 12:141–179

    PubMed  CAS  Google Scholar 

  40. Christman JW, Lancaster LH, Blackwell TS (1998) Nuclear factor kappa B:a pivotal role in the systemic inflammatory response syndrome and new target for therapy. Intensive Care med 24:1131–1138

    Article  PubMed  CAS  Google Scholar 

  41. Senden NH, Jeunhomme TM, Heemskerk JW et al (1998) Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol 161:4318–4324

    PubMed  CAS  Google Scholar 

  42. Creasey AA, Chang AC, Feigen L et al (1993) Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest 91:2850–2856

    PubMed  CAS  Google Scholar 

  43. Asakura H, Ontachi Y, Mizutani T et al (2001) An enhanced fibrinolysis prevents the development of multiple organ failure in disseminated intravascular coagulation in spite of much activation of blood coagulation. Crit Care Med 29:1164–1168

    Article  PubMed  CAS  Google Scholar 

  44. Parry GC, Mackman N (1995) Tran scriptional regulation of tissue factor expression in human endothelial cells. Arterioscler Thromb Vasc Biol 15:612–621

    PubMed  CAS  Google Scholar 

  45. Levi M, ten Cate H, Bauer KA et al (1994) Inhibition of endotoxin induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpazees. J Clin Invest 93:114–120

    PubMed  CAS  Google Scholar 

  46. Conway EM, Rosenberg RD (1988) Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol Cell Biol 8:5588–5592

    PubMed  CAS  Google Scholar 

  47. Rosenberg RD, Aird WC (1999) Vascular bed specific hemostasis and hypercoagulable states. N Engl J Med 340:1555–1564

    Article  PubMed  CAS  Google Scholar 

  48. Sakata Y, Loskutoff DJ, Gladson CL et al (1986) Mechanism of protein C dependent clot lysis: Role of plasminogen activator inhibitor. Blood 68:1218–1223

    PubMed  CAS  Google Scholar 

  49. Murakami K, Okajima K, Uchiba M et al (1996) Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 87(2):642–647

    PubMed  CAS  Google Scholar 

  50. Taylor FB Jr, Chang A, Esmon CT et al (1987) Protein C prevents the coagulopathies and lethal effects of E. coli infusion in the baboon. J Clin Invest 79:918–925

    PubMed  CAS  Google Scholar 

  51. Jimenez MF, Marshall J, International Sepsis Forum (2001) Source control in the management of sepsis. Intensive Care Med 27:S49–S62

    Article  PubMed  Google Scholar 

  52. Hanon FX, Monnet DL, Sorensen TL et al (2002) Survival of patients with bacteraemia in relation to initial empirical antimicrobial treatment. Scand J Infect Dis 34:520–528

    Article  PubMed  CAS  Google Scholar 

  53. Byl B, Clevenbergh P, Jacobs F et al (1999) Impact of infectious diseases specialists and microbiological data on the appropriateness of antimicrobial therapy of bacteremia. Clin Infect Dis 29:60–66

    PubMed  CAS  Google Scholar 

  54. Bochud PY, Glauser MP, Calandra T (2001) Antibiotics in sepsis. Intensive Care Med 27:S33–S48

    Article  PubMed  Google Scholar 

  55. Vincent JL, Jacobs F (2003) Infection in critically ill patients: clinical impact and management. Curr Opin Infect Dis 16:309–313

    PubMed  Google Scholar 

  56. Vincent JL (2002) Sepsis definitions. Lancet Infect Dis 2:135

    Article  PubMed  Google Scholar 

  57. Levy MM, Fink MP, Marshall JC et al. SCCM/ESICM/ACP/ATS/SIS. International Sepsis Definitions Conference. Crit Care Med 2003 31:1250–1256

    Article  PubMed  Google Scholar 

  58. Appoloni O, Dupont E, Andrien M et al (2001) Association of TNF2, a TNF-a promoter gene polymorfism, with plasma TNF a levels and mortality in septic shock. Am J Med 110:486–488

    Article  PubMed  CAS  Google Scholar 

  59. Vincent JL, Moreno R, Takala J et al (1996) The SOFA (sepsis related organ failure assessment) score to descrive organ/dysfunction failure. Intensive Care Med 1996:22:707–710

    PubMed  CAS  Google Scholar 

  60. Vincent JL, de Mendonca A, Cantraine F et al (1998) Use of the SOFA score to assess the incidence of organ/dysfunction/failure in intensive care units: results of a multicentre, prospective study. Crit Care Med; 26:1793–1800

    PubMed  CAS  Google Scholar 

  61. Lundberg JS, Perl TM, Wiblin T et al (1998) Septic shock: an analysis of outcomes for patients with onset on hospital wards versus intensive care units. Crit care med 26:1020–1024

    Article  PubMed  CAS  Google Scholar 

  62. Rivers EP, Nguyen HB, Amponsah D (2003) Sepsis: A landscape from the emergency department to the intensive care unit. Crit Care Med 31:968–969

    Article  PubMed  Google Scholar 

  63. Tugrul S, Esen F, Celebi S et al (2002) Reliability of procalcitonin as a severity marker in critically ill patients with inflammatorry response. Anaesth Intensive Care 30:747–754

    PubMed  CAS  Google Scholar 

  64. Weil MH, Nakagawa Y, Tang W et al (1999) Sublingual capnometry: a new non-invasive measurement for diagnosis and quantification of severity of circulatory shock. Crit Care Med 27:1225–1229

    Article  PubMed  CAS  Google Scholar 

  65. Van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in critically ill. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  66. Bochud PY, Glauser MP, Calandra T; International Sepsis Forum (2001) Antibiotics in sepsis: Intensive Care Med 27:S33–S48

    Article  PubMed  Google Scholar 

  67. Fish DN (2002) Optimal antimicrobial therapy for sepsis. Am J Health Syst Pharm 59:S13–S19

    PubMed  CAS  Google Scholar 

  68. Vincent JL (2001) Hemodynamic support in septic shock. Intensive Care Med 27: S80–S92

    Article  PubMed  Google Scholar 

  69. Choi PT, Yip G, Quinonez LG et al. Crystalloids vs colloids in fluid resuscitation: A systematic review. Crit Care Med 1999 27:200–210

    Article  PubMed  CAS  Google Scholar 

  70. Cook D, Guyatt G (2001) Colloid use for fluid resuscitation: evidence and spin. Ann Intern Med 135:205–208

    PubMed  CAS  Google Scholar 

  71. Schierhout G, Roberts I (1998) Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ 316:961–964

    PubMed  CAS  Google Scholar 

  72. Gregory JS, Bonfiglio MF, Dasta JF et al (1991) Experience with phenilephrine as a component of the pharmacologic support of septic shock. Crit Care Med 19:1395–1400

    Article  PubMed  CAS  Google Scholar 

  73. Hanneman L, Reinhart K, Grenzer O et al (1995) Comparison of dopamine to dobutamine and norepineprine for oxygen delivery and uptake in septic shock. Crit Care Med 23:1926–1970

    Article  Google Scholar 

  74. Jindal N, Hollenberg SM, Dellinger RP (2000) Pharmacologic issues in the management of septic shock. Crit Care Clin 16:233–249

    Article  PubMed  CAS  Google Scholar 

  75. Levy B, Bollaert PE, Carpentier C et al (1997) Comparison of norepinephrine for hemodynamics, lactete metabolism, and gastric tonometric variables in septic shock: A prospective, randomized study. Intensive Care Med 23:282–287

    Article  PubMed  CAS  Google Scholar 

  76. Dhainaut JF, Yan SB, Cariou A et al (2002) Soluble thrombomodulin, plasma-derived unactivated protein C, and recombinant human activated protein C in sepsis. Crit Care Med 30:S318–S324

    Article  PubMed  CAS  Google Scholar 

  77. Bone RC, Fisher CJ, Clemmer TP et al (1987) A controlled clinical trial of high dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317:653–658

    Article  PubMed  CAS  Google Scholar 

  78. Krueger WA, Lenhart FP, Neeser G et al (2002) Influence of combined intravenous and topical antibiotic prophylaxis on the incidence of infections, organ dysfunctions, and mortality in critically ill surgical patients: a prospective, stratified, randomized, double-blind, placebo-controlled clinical trial. Am J Respir Crit Care Med 166:1029–1037

    Article  PubMed  Google Scholar 

  79. De Jonge E, Schultz M, Spanjaard L et al (2003) Effects of selective decontamination of the digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 363:1011–1016

    Google Scholar 

  80. Anonymous (2000) Ventilation with lower tidal volumes as compared with traditional tidal volume for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  81. Liberati A, D’Amico R, Pifferi S et al (2004) Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care. Cochrane Database Syst Rev 4:CD000022

    Google Scholar 

  82. van Saene HK, Petros AJ, Ramsay G et al (2003) All great truths are iconoclastic: selective decontamination of the digestive tract moves from heresy to level 1 truth. Intensive Care Med 29:677–690

    Article  PubMed  Google Scholar 

  83. Viviani M, Silvestri L, van Saene HK, Gullo A (2005) Surviving Sepsis Campaign Guidelines: selective decontamination of the digestive tract still neglected. Crit Care Med 33:462–463

    Article  PubMed  Google Scholar 

  84. Cronin L, Cook DJ, Carlet J et al (1995) Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med 23:1430–1439

    Article  PubMed  CAS  Google Scholar 

  85. Annane D, Sibille V, Troche G et al (2000) A 3-level prognostic classification in septic shock based on cortisol response to corticotropin. JAMA 283:1038–1045

    Article  PubMed  CAS  Google Scholar 

  86. Annane D, Sibille V, Charpentier C et al (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288:862–871

    Article  PubMed  CAS  Google Scholar 

  87. Chen JY (1996) Intravenous immunoglobulin in the treatment of full term and premature new-born with sepsis. J Formos Med Asoc 24:733–742

    Google Scholar 

  88. Schedel I, Dreikh H (1991) Treatment of gram-negative septic shock with an immunoglobulin preparation: a prospective randomized clinical trial. Clin Care Med 10:1104–1113

    Article  Google Scholar 

  89. Garbett ND, Munro CS, Cole Pj (1989) Opsonic activity of a new intravenous immunoglobulin preparation: pentaglobin compared with sandoglobulin. Clin Experimental Immunol 76:3–12

    Google Scholar 

  90. McCallion K, Harkin DW, Gardiner KR (2004) Role of adenosine in immunomodulation: review of the literature. Crit Care Med 32:273–277

    Article  PubMed  CAS  Google Scholar 

  91. Moser GH, Schareder J, Deessen A (1989) Turnover of adenosine in plasma of human and dog blood. Am J Physiol 256:C799–C806

    PubMed  CAS  Google Scholar 

  92. Fredholm BB (1997) Purines and neutrophil leukocytes. Gen Pharmacol 28:345–350

    PubMed  CAS  Google Scholar 

  93. Beral Al, Cerra FB (1994) Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA 271:226–233

    Article  Google Scholar 

  94. Cronstein BN, Levin RI, Belanoff J et al (1986) Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78:760–770

    Article  PubMed  CAS  Google Scholar 

  95. Bouma MG, van den Wildenberg FA, Buurman WA (1997) The anti-inflammatory potential of adenosine in ischaemia-reperfusion injury:established and putative beneficial actions of a retaliatory metabolite. Shock 8:313–320

    Article  PubMed  CAS  Google Scholar 

  96. Thiel M, Holzer K, Kreimeier U (1997) Effects of adenosine on the functions of circulating polymorphonuclear leukocytes during hyperdynamic endotoxemia. Infect Immun 65:2136–2144

    PubMed  CAS  Google Scholar 

  97. Belardinelli L, Linden J, Berne RM (1989) The cardiac effects of adenosine. Prog Cardiovasc Dis 32:73–97

    Article  PubMed  CAS  Google Scholar 

  98. Hunt T, Hussain Z (1994) Can wound healing be a paradigm for tissue repair? Med Sci Sports Exerc 26:755–758

    Article  PubMed  CAS  Google Scholar 

  99. Ayala A, Lomas J (2003) Pathological aspects of apoptosis in severe sepsis and shock? Int J Biochem Cell Biol 35:7–15

    Article  PubMed  CAS  Google Scholar 

  100. Lin LH, Hopf WH (2003) Paradigm of the injury-repair continuum during critical illness. Critical Care Med 31:S493–S495

    Article  Google Scholar 

  101. Cobb J, Hotchkiss R, Karl IE et al (1996) Mechanisms of cells injury and death. Br J Anaesth 77:3–10

    PubMed  CAS  Google Scholar 

  102. Mahidhara R, Billiar T (2000) Apoptosis in sepsis. Crit Care Med 28:N105–N113

    Article  PubMed  CAS  Google Scholar 

  103. Papathanassoglou E, Moynihan J, Ackerman MH (2000) Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? A review and a theoretical framework. Crit Care Med 28:537–549

    Article  PubMed  CAS  Google Scholar 

  104. Abraham JA, Whang JL, Tumolo A et al (1986) Human basic fibroblast growth factor: Nucleotide sequence and genomic organization. EMBO J 5:2523–2528

    PubMed  CAS  Google Scholar 

  105. Christians E, Yan L, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30:S43–S50

    Article  CAS  Google Scholar 

  106. Kress HG (2001) The doctor’s dilemma: the assessment of successful adjunctive immunotherapy in critically ill patients. In: Faist E (ed) Immunological Screening and Immunotherapy in Critically Ill Patients with Abdominal Infections. Springer, Milan, pp 139–156

    Google Scholar 

  107. Finch RG (1998) Design of clinical trials in sepsis: problem and pitfalls. J Antimicrob Chemother 42:A95–A102

    Article  Google Scholar 

  108. Levy M, Fink MP, Marshall JC et al (2001) SCCM/ESICM/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256

    Article  Google Scholar 

  109. Gasche Y, Pittet D, Suter PM (1995) Outcome and prognostic factors in bactaeremic sepsis. In: Sibbald WJ, Vincent JL (eds) Clinical trials for the treatment of sepsis. Berlin, Springer-Verlag, p 35

    Google Scholar 

  110. Knaus WA, Draper EA, Wagner DP et al (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829

    Article  PubMed  CAS  Google Scholar 

  111. Knaus WA, Wagner DP, Harrell FE (1995) What determines prognosis in sepsis? In: Sibbald WJ, Vincent JL (eds) Clinical trials for the treatment of sepsis. Berlin, Springer-Verlag, p 122

    Google Scholar 

  112. Graf J, Doig GS, Cook DJ (2002) Randomized, controlled clinical trials in sepsis:Has methodological quality improved over time? Crit Care Med 30:461–472

    Article  PubMed  Google Scholar 

  113. Vincent JL (1995) The ‘at risk’ patient population. In: Clinical trials for the treatment of sepsis. In: Sibbald WJ, Vincent JL (eds) Clinical trials for the treatment of sepsis. Berlin, Springer-Verlag, p 13

    Google Scholar 

  114. Sibbald WJ, Vincent JL (1995) Round table conference on clinical trials for the treatment of sepsis. Crit Care Med 23:394–399

    Article  PubMed  CAS  Google Scholar 

  115. Marshall JC (1995) Multiple organ dysfunction syndrome (MODS). In: Sibbald WJ, Vincent JL (eds) Clinical trials for the treatment of sepsis. Berlin, Springer-Verlag

    Google Scholar 

  116. Dellinger RP, Carlet JM, Masur H (2004) Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873

    Article  PubMed  Google Scholar 

  117. Rice TW, Bernard GR (2005) Therapeutic intervention and target for sepsis. Annu Rev Med 56:225–248

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this chapter

Cite this chapter

Gullo, A., Iscra, F., Rubulotta, F. (2005). Sepsis and Organ(s) Dysfunction — Key Points, Reflections, and Perspectives. In: Gullo, A., Lumb, P.D. (eds) Intensive and Critical Care Medicine. Springer, Milano. https://doi.org/10.1007/88-470-0350-4_8

Download citation

  • DOI: https://doi.org/10.1007/88-470-0350-4_8

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0349-1

  • Online ISBN: 978-88-470-0350-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics