Automatic Target Recognition in Multispectral and Hyperspectral Imagery Via Joint Transform Correlation

Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 6)


In this chapter, we review the recent trends and advancement on automatic target recognition (ATR) in multispectral and hyperspectral imagery via joint transform correlation. In particular, we discuss the one-dimensional spectral fringe-adjusted joint transform (SFJTC) correlation based technique for detecting very small targets involving only a few pixels in multispectral and hyperspectral imagery (HSI). In this technique, spectral signatures from the unknown HSI are correlated with the reference signature using the SFJTC technique. This technique can detect both single and/or multiple desired targets in constant time while accommodating the in-plane and out-of-plane distortions. Furthermore, a new metric, called the peak-to-clutter mean (PCM), is introduced that provides sharp and high correlation peaks corresponding to targets and makes the proposed technique intensity invariant. This technique is also applied to the discrete wavelet transform (DWT) coefficients of the multispectral and HSI data in order to improve the detection performance, especially in the presence of noise or spectral variability. Detection results in the form of receiver-operating-characteristic (ROC) curves and the area under the ROC curves (AUROC) are used to show the performance of the proposed algorithms against other algorithms proposed in the literature. Test results using real life hyperspectral image data cubes are presented to verify the effectiveness of these proposed techniques.


Hyperspectral image processing Automatic target detection Spectral variability Spectral fringe-adjusted joint transform correlation Spectral signature Spectral variability Wavelet transform DWT coefficients 



The authors wish to thank Drs. S. Ochilov, E. Sarigul and W. A. Sakla for many rewarding discussions.


  1. 1.
    Slater, D., Healey, G.: A spectral change space representation for invariant material tracking in hyperspectral images. Proc SPIE 3753, 308–317 (1999)CrossRefGoogle Scholar
  2. 2.
    Manolakis, D., Marden, D., Shaw, G.: Hyperspectral image processing for automatic target detection applications. Linc Lab J 14, 79–114 (2003)Google Scholar
  3. 3.
    Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 19, 29–43 (2002)CrossRefGoogle Scholar
  4. 4.
    Mahalanobis, A., Muise, R.R., Stanfill, S.R.: Quadratic correlation filter design methodology for target detection and surveillance applications. Appl. Opt. 43, 5198–5205 (2004)CrossRefGoogle Scholar
  5. 5.
    Yamany, S.M., Farag, A.A., Hsu, S.-Y.: A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems. Pattern Recogn. Lett. 20, 1431–1438 (1999)CrossRefGoogle Scholar
  6. 6.
    Manolakis, D.: Taxonomy of detection algorithms for hyperspectral imaging applications. Opt. Eng. 44(6), 1–11 (2005)CrossRefGoogle Scholar
  7. 7.
    Kay, S.M.: Fundamentals of statistical signal processing. Englewood Cliffs, New Jersey (1998)Google Scholar
  8. 8.
    Fisher, R.A.: Multiple measures in taxonomic problems. Ann. Eugenics 7, 179–188 (1936)CrossRefGoogle Scholar
  9. 9.
    Reed, I.S., Yu, X.: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans Acoust. Speech, Signal Process. 38, 1760–1770 (1990)CrossRefGoogle Scholar
  10. 10.
    Center for the Study of Earth from Space (CSES), SIPS User’s Guide, The spectral image processing system, vol. 1.1, pp. 74. University of Colorado, Boulder, (1992)Google Scholar
  11. 11.
    Weaver, C.S., Goodman, J.W.: A technique for optically convolving two functions. Appl. Opt. 5, 1248–1249 (1966)CrossRefGoogle Scholar
  12. 12.
    Yu, F.T.S., Ludman, J.E.: Microcomputer based programmable joint transform correlator for automatic pattern recognition and identification. Opt. Lett. 11, 395–397 (1986)CrossRefGoogle Scholar
  13. 13.
    Javidi, B., Tang, Q.: Chirp-encoded joint transform correlators with a single input plane. Appl. Opt. 33, 227–230 (1994)CrossRefGoogle Scholar
  14. 14.
    Alam, M.S., Goh S. F. Dacharaju, S.: Three-dimensional color pattern recognition using fringe-adjusted joint transform correlation with CIELab coordinates, accepted for publication, IEEE Trans. Instrum. Meas. 58, 2176-2184 (2009)Google Scholar
  15. 15.
    Alam, M.S., Karim, M.A.: Fringe-adjusted joint transform correlation. Appl. Opt. 32, 4344–4350 (1993)CrossRefGoogle Scholar
  16. 16.
    Alam, M.S., Haque, M., Khan, J.F., Kettani, H.: Fringe-adjusted joint transform correlator based target detection and tracking in forward looking nfrared image sequence. Opt. Eng. 43, 1407–1413 (2004)CrossRefGoogle Scholar
  17. 17.
    Islam, M.N., Alam, M.S. Karim, M.A.: Pattern recognition in hyperspectral imagery using 1D shifted phase-encoded joint transform correlation. J. Opt. Commun. 281, 4854–4861 (2008)Google Scholar
  18. 18.
    Alam, M.S., Ochilov, S.: Target detection in hyperspectral imagery using one-dimensional fringe-adjusted joint transform correlation. Proc. SPIE 6245, 624505 (2006)CrossRefGoogle Scholar
  19. 19.
    Alam, M.S., Bal, A., Horache, E.H., Goh, S.F., Loo, C.H., Regula, S.P., Sharma, A.: Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms. Opt. Eng. 44, 067005 (2005)CrossRefGoogle Scholar
  20. 20.
    Wang, Q., Guo, Q., Zhou, J., Lin, Q.: Nonlinear joint fractional Fourier transform correlation for target detection in hyperspectral image. Opt. Laser Technol 44, 1897–1904 (2012)Google Scholar
  21. 21.
    Jutamulia, S., Storti, G.M., Gregory, D.A., Kirsch, J.C.: Illumination-independent high-efficiency joint transform correlator. J. Appl. Opt. 30, 4173–4175 (1991)CrossRefGoogle Scholar
  22. 22.
    Alam, M.S., Ochilov, S.: Spectral fringe-adjusted joint transform correlation. Appl. Opt. 49, B18–B25 (2010)CrossRefGoogle Scholar
  23. 23.
    Alam, M.S., Karim, M.A.: Multiple target detection using a modified fringe-adjusted joint transform correlator. J. Opt. Eng. 33, 1610–1617 (1994)CrossRefGoogle Scholar
  24. 24.
    Sakla, W. Sakla, A., Alam, M.S.: Deterministic hyperspectral target detection using the DWT and spectral fringe-adjusted joint transform correlation (Invited Paper). In: Proceedings of the SPIE Conference on Automatic Target Recognition, vol. 6967, pp. 1–11 (2008)Google Scholar
  25. 25.
    DeVore, R.A., Jawerth, B., Lucier, B.J.: Image compression through wavelet transform coding. IEEE Trans. Inf. Theory 38, 719–746 (1992)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Chang, T., Kuo, C.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 2, 429–441 (1993)CrossRefGoogle Scholar
  28. 28.
    Bruce, L.M., Li, J.: Wavelets for computationally efficient hyperspectral derivative analysis. IEEE Trans. Geosci. Remote Sens. 39, 1540–1546 (2001)CrossRefGoogle Scholar
  29. 29.
    Bruce, L.M., Koger, C.H., Li, J.: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002)CrossRefGoogle Scholar
  30. 30.
    Kaewpijit, S., Le Moigne, J., El-Ghazawi, T.: Automatic reduction of hyperspectral imagery using wavelet spectral analysis. IEEE Trans. Geosci. Remote Sens. 41, 863–871 (2003)CrossRefGoogle Scholar
  31. 31.
    Bruce, L.M., Morgan, C., Larsen, S.: Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms. IEEE Trans. Geosci. Remote Sens. 39, 2217–2226 (2001)CrossRefGoogle Scholar
  32. 32.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)CrossRefMATHGoogle Scholar
  33. 33.
    Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice Hall, Upper Saddle River (1995)MATHGoogle Scholar
  34. 34.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)MATHGoogle Scholar
  35. 35.
    ITRES Research, accessed in 2007.
  36. 36.
    Schowengerdt, R.A.: Remote Sensing, 2nd edn. Academic Press, San Diego (1997)Google Scholar
  37. 37.
    Chein, I.C., Heinz, D.C.: Constrained subpixel target detection for remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 38(3), 1144–1159 (2000)CrossRefGoogle Scholar
  38. 38.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, New Jersey (1989)MATHGoogle Scholar
  39. 39.
    Chang, C.-I.: Hyperspectral Imaging: techniques for Spectral Detection and Classification. Kluwer Academic, New York (2003)CrossRefGoogle Scholar
  40. 40.
    Chang, C.-I.: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 46, 1927–1932 (2000)CrossRefMATHGoogle Scholar
  41. 41.
    Sakla, A., Sakla, W., Alam, M.S.: Hyperspectral target detection via discrete wavelet-based spectral fringe-adjusted joint transform correlation. Appl. Opt. 50, 5545–5554 (2011)CrossRefGoogle Scholar
  42. 42.
    Parker, D.R., Gustafson, S.G., Ross, T.D.: Receiver operating characteristic and confidence error metrics for assessing the performance of automatic target recognition systems. Opt. Eng. 44, 097202 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of South AlabamaMobileUSA

Personalised recommendations