Computer Simulation of Diffusion and Reaction in Metallic Nanoparticles

  • A. V. Evteev
  • E. V. Levchenko
  • I. V. Belova
  • G. E. Murch
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 4)

Abstract

In this chapter, we review the understanding that has been gained by the simulation methods of kinetic Monte Carlo and molecular dynamics of solid state diffusion in nanoparticles. We discuss the simulation of the formation and subsequent shrinkage by diffusion of hollow nanoparticles, the formation by diffusion of segregated bi-metallic nanoparticles and the diffusion with reaction to form intermetallic nanoparticles.

References

  1. 1.
    Yin, Y.D., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A., Alivisatos, A.P.: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004)CrossRefGoogle Scholar
  2. 2.
    Smigelskas, A.D., Kirkendall, E.O.: Zinc diffusion in alpha brass. Trans. AIME 171, 130–142 (1947)Google Scholar
  3. 3.
    Wang, C.M., Baer, D.R., Thomas, L.E., Amonette, J.E., Antony, J., Qiang, Y., Duscher, G.: Void formation during early stages of passivation: initial oxidation of iron nanoparticles at room temperature. J. Appl. Phys. 98, 94308-1−94308-7 (2005)Google Scholar
  4. 4.
    Han, C., Wu, X., Lin, Y., Gu, G., Fu, X., Hi, Z.: Preparation and characterization of Y2O3 hollow spheres. J. Mater. Sci. 41, 3679–3682 (2006)CrossRefGoogle Scholar
  5. 5.
    Nakamura, R., Tokozakura, D., Nakajima, H.: Hollow oxide formation by oxidation of Al and Cu nanoparticles. J. Appl. Phys. 101, 074303-1–074303-7 (2007) Google Scholar
  6. 6.
    Nakamura, R., Lee, J.G., Tokozakura, D., Mori, H., Nakajima, H.: Formation of hollow ZnO through low-temperature oxidation of Zn nanoparticles. Mater. Lett. 61, 1060–1063 (2007)CrossRefGoogle Scholar
  7. 7.
    Nakamura, R., Lee, J.G., Tokozakura, D., Mori, H., Nakajima, H.: Oxidation behaviour of Ni nanoparticles and formation process of hollow NiO. Phil. Mag. 88, 257–264 (2008)CrossRefGoogle Scholar
  8. 8.
    Xie, L., Zhang, J., Liu, Y., Li, Y., Li, X.: Synthesis of Li2NH hollow nanospheres with superior hydrogen storage kinetics by plasma metal reaction. Chem. Mater. 20, 282–286 (2008)CrossRefGoogle Scholar
  9. 9.
    Ng, C.H., Tan, H., Fan, W.Y.: Formation of Ag2Se nanotubes and dendrite-like structures from UV irradiation of a CSe2/Ag colloidal solution. Langmuir 22, 9712–9717 (2006)CrossRefGoogle Scholar
  10. 10.
    Gao, J., Zhang, B., Zhang, X., Xu, B.: Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide. Angew. Chem. Int. Ed. 45, 1220–1223 (2006)CrossRefGoogle Scholar
  11. 11.
    Li, Q., Penner, R.M.: Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles. Nano Lett. 5, 1720–1725 (2005)CrossRefGoogle Scholar
  12. 12.
    Fan, H.J., Knez, M., Scholz, R., Nielsch, K., Pippel, E., Hesse, D., Zacharias, M., Gösele, U.: Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 5, 627–631 (2006)CrossRefGoogle Scholar
  13. 13.
    Aldinger, F.: Controlled porosity by an extreme Kirkendall effect. Acta Met. 22, 923–928 (1974)CrossRefGoogle Scholar
  14. 14.
    Geguzin, Y.E.: Why and how vacancies disappear. Science, Moscow (1976)Google Scholar
  15. 15.
    Sun, Y., Mayers, B., Xia, Y.: Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003)CrossRefGoogle Scholar
  16. 16.
    Tu, K.N., Gösele, U.: Hollow nanostructures based on the Kirkendall effect: design and stability considerations. Appl. Phys. Lett. 86, 093111-1−093111-3 (2005)Google Scholar
  17. 17.
    Belova, I.V., Murch, G.E.: Analysis of the formation of hollow nanocrystals: theory and Monte Carlo simulation. J. Phase. Equil. Diffus. 26, 430–434 (2005)Google Scholar
  18. 18.
    Philibert, J., Atom movements: diffusion and mass transport in solids. editions de physique, les ulis (1991)Google Scholar
  19. 19.
    Manning, J.R.: Diffusion kinetics for atoms in crystals. Van Nostrand Reinhold, Princeton (1968)Google Scholar
  20. 20.
    Prasad, S., Paul, A.: Theoretical consideration on the formation of nanotube following the Kirkendall effect. Appl. Phys. Lett. 90, 233114-1−233114-3 (2007)Google Scholar
  21. 21.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Formation of a hollow binary alloy nanosphere: a kinetic Monte Carlo study. J. Nano Res. 7, 11–17 (2009)CrossRefGoogle Scholar
  22. 22.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  23. 23.
    Gusak, A.M., Zaporozhets, T.V.: Hollow nanoshell formation and collapse in binary solid solutions with large range of solubility. J. Phys. Condens. Mat. 21, 415303-1–415303-11 (2009)Google Scholar
  24. 24.
    Gusak, A.M., Zaporozhets, T.V., Tu, K.N., Gösele, U.: Kinetic analysis of the instability of hollow nanoparticles. Phil. Mag. 85, 4445–4464 (2005)CrossRefGoogle Scholar
  25. 25.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Shrinking kinetics by vacancy diffusion of a pure element hollow nanosphere. Phil. Mag. 87, 3787–3796 (2007)CrossRefGoogle Scholar
  26. 26.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Stability and shrinkage by diffusion of hollow nanotubes. Def. Diff. Forum 266, 39–47 (2007)CrossRefGoogle Scholar
  27. 27.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Theoretical analysis and atomistic modelling of diffusion and stability of pure element hollow nanospheres and nanotubes. Def. Diff. Forum 277, 21–26 (2008)CrossRefGoogle Scholar
  28. 28.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Stability of hollow nanospheres: a molecular dynamics study. Sol. St. Phen. 129, 125–130 (2007)CrossRefGoogle Scholar
  29. 29.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Shrinking kinetics by vacancy diffusion of hollow binary alloy nanospheres driven by the Gibbs-Thomson effect. Phil. Mag. 88, 1524–1541 (2008)Google Scholar
  30. 30.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Composition effect on shrinkage of hollow binary alloy nanospheres. Def. Diff. Forum 289–292, 665–672 (2009)CrossRefGoogle Scholar
  31. 31.
    Moleko, L.K., Allnatt, A.R., Allnatt, E.L.: A self-consistent theory of matter transport in a random lattice gas and some simulation results. Phil. Mag. A 59, 141–160 (1989)CrossRefGoogle Scholar
  32. 32.
    Murch, G.E., Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Recent progress in the simulation of diffusion associated with hollow and bi-metallic nanoparticles. Diffus. Fundam. 11, 42.1–42.22 (2009) Google Scholar
  33. 33.
    Toshima, N., Kanemaru, M., Shiraishi, Y., Koga, Y.: Spontaneous formation of core/shell bimetallic nanoparticles: A calorimetric study. J. Phys. Chem. B 109, 16326–16331 (2005)CrossRefGoogle Scholar
  34. 34.
    Takenaka, S., Shigeta, Y., Tanabem, E., Otsuka, K.: Methane decomposition into hydrogen and carbon nanofibers over supported Pd−Ni catalysts: Characterization of the catalysts during the reaction. J. Phys. Chem. 108, 7656–7664 (2004)Google Scholar
  35. 35.
    Sao-Joao, S., Giorgio, S., Penisson, J.M., Chapon, C., et al.: Structure and deformations of Pd−Ni core-shell nanoparticles. J. Phys. Chem. 109, 342–347 (2005)Google Scholar
  36. 36.
    Hungría, A.B., Calvino, J.J., Anderson, J.A., Martínez-Arias, A.: Model bimetallic Pd–Ni automotive exhaust catalysts: Influence of thermal aging and hydrocarbon self-poisoning. Appl. Catal. 62, 359–368 (2006)CrossRefGoogle Scholar
  37. 37.
    Miegge, P., Rousset, J.L., Tardy, B., Massardier, J., et al.: Pd1Ni99 and Pd5Ni95-Pd surface segregation and reactivity for the hydrogenation of 1,3-butadiene. J. Catal. 149, 404–413 (1994)CrossRefGoogle Scholar
  38. 38.
    Hermann, P., Guigner, J.M., Tardy, B., Jugnet, Y., et al.: The Pd/Ni(110) bimetallic system: surface characterisation by LEED, AES, XPS, and LEIS techniques; new insight on catalytic properties. J. Catal. 163, 169–175 (1996)CrossRefGoogle Scholar
  39. 39.
    Michel, A.C., Lianos, L., Rousset, J.L., Delichère, P., et al.: Surface characterization and reactivity of Pd8Ni92 (111) and (110) alloys. Surf. Sci. 416, 288–294 (1998)CrossRefGoogle Scholar
  40. 40.
    Porte, L., Phaner-Goutorbe, M., Guigner, J.M., Bertolini, J.C.: Structuring and catalytic activity of palladium thin layers deposited on the Ni(110) surface. Surf. Sci. 424, 262–270 (1999)CrossRefGoogle Scholar
  41. 41.
    Levchenko, E.V., Evteev, A.V., Belova, I.V., Murch, G.E.: Surface-sandwich segregation phenomena in bimetallic Ag−Ni and Pd−Ni nanoparticles: a molecular dynamics study. Def. Diff. Forum 289–292, 657–664 (2009)CrossRefGoogle Scholar
  42. 42.
    Baletto, F., Mottet, C., Ferrando, R.: Growth of three-shell onionlike bimetallic nanoparticles. Phys. Rev. Lett. 90, 135504-1–135504-4 (2003)Google Scholar
  43. 43.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Modelling of the formation of Pd−Ni alloy nanoparticles by interdiffusion. Def. Diff. Forum 277, 207–212 (2008)CrossRefGoogle Scholar
  44. 44.
    Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Interdiffusion and surface–sandwich ordering in initial Ni-core−Pd-shell nanoparticle. Phys. Chem. Chem. Phys. 11, 3233–3240 (2009)CrossRefGoogle Scholar
  45. 45.
    Frank, F.C., Kasper, J.S.: Complex alloy structures regarded as sphere packings.1. Definitions and basic principles. Acta. Cryst. 11, 184–190 (1959)CrossRefGoogle Scholar
  46. 46.
    Frank, F.C., Kasper, J.S.: Complex alloy structures regarded as sphere packing.2. Analysis and classification of representative structures. Acta. Cryst. 12, 483–499 (1958)CrossRefGoogle Scholar
  47. 47.
    Westbrook, J.H., Fleischer, R.L. (eds.): Intermetallic Compounds: Structural Applications Vol. 4. Wiley, New York (2000) Google Scholar
  48. 48.
    Dunand, D.C.: Reactive synthesis of aluminide intermetallics. Mater. Manuf. Proc. 10, 373–403 (1995)CrossRefGoogle Scholar
  49. 49.
    Farber, L., Klinger, L., Gotman, I.: Modeling of reactive synthesis in consolidated blends of fine Ni and Al powders. Mater. Sci. Eng. A 254, 155–165 (1998)CrossRefGoogle Scholar
  50. 50.
    Morsi, K.: Review: reaction synthesis processing of Ni−Al intermetallic materials. Mater. Sci. Eng. A 299, 1–15 (2001)CrossRefGoogle Scholar
  51. 51.
    Li, H.P.: Influence of ignition parameters on micropyretic synthesis of Ni−Al compound. Mater. Sci. Eng. A 404, 146–152 (2005)CrossRefGoogle Scholar
  52. 52.
    Kim, H.Y., Chung, D.S., Hong, S.H.: Intermixing criteria for reaction synthesis of Ni/Al multilayered microfolls. Scripta. Mater. 54, 1715–1719 (2006)CrossRefGoogle Scholar
  53. 53.
    Li, H.P., Bhaduri, S.B., Sekhar, J.A.: Metal-ceramic composites based on the Ti–B–Cu porosity system. Metall Mater. Trans. A 24, 251–261 (1992)Google Scholar
  54. 54.
    Dong, S., Hou, P., Cheng, H., Yang, H., Zou, G.: Fabrication of intermetallic Ni−Al by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure. J. Phys. Condens. Mat. 14, 11023–11030 (2002)CrossRefGoogle Scholar
  55. 55.
    Fukumuto, M., Yamasaki, M., Nie, M., Yasui, T.: X. Synthesis and characterization of nano-structured Ni−Al intermetallic compound coating. Q. J. Jpn. Weld. Soc. 24, 87–92 (2006)CrossRefGoogle Scholar
  56. 56.
    Zhao, S.J., Germann, T.C., Strachan, A. Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. J. Chem. Phys. 125, 164707-1–1647-8 (2006)Google Scholar
  57. 57.
    Delogu, F.: Demixing phenomena in Ni−Al nanometre-sized particles. Nanotechnology 18, 065708-1–065708-7 (2007)Google Scholar
  58. 58.
    Delogu, F.: Numerical simulation of the thermal response of Al core/Ni shell nanometer-sized particles. Nanotechnology 18, 505702-1–505702-7 (2007)Google Scholar
  59. 59.
    Henz, B.J., Hawa, T., Zachariah, M.: Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles. Mol. Simul. 35, 804–811 (2009)CrossRefGoogle Scholar
  60. 60.
    Henz, B.J., Hawa, T., Zachariah, M. Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles. J. Appl. Phys. 105, 124310-1–124310-10 (2009)Google Scholar
  61. 61.
    Angelo, J.E., Moody, N.R., Baskes, M.I.: Trapping of hydrogen to lattice-defects in nickel. Model. Simul. Mater. Sci. Eng. 3, 298–307 (1995)CrossRefGoogle Scholar
  62. 62.
    Levchenko, E.V., Evteev, A.V., Riley, D.P., Belova, I.V., Murch, G.E.: Molecular dynamics simulation of the alloying reaction in Al-coated Ni nanoparticle. Comput. Mater. Sci. 47, 712–720 (2010)CrossRefGoogle Scholar
  63. 63.
    Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A.: Embedded-atom potential for B2-NiAl. Phys. Rev. B 65, 224114-1–224114-14 (2002)Google Scholar
  64. 64.
    Bradley, A.J., Taylor, A.: An X-ray analysis of the nickel–aluminium system. Proc. R. Soc. Lond. A 159, 56–72 (1937)CrossRefGoogle Scholar
  65. 65.
    Taylor, A., Doyle, N.J.: Further studies on nickel−aluminum system. J. Appl. Crystallogr. 5, 201–215 (1972)CrossRefGoogle Scholar
  66. 66.
    Evteev, A.V., Levchenko, E.V., Riley, D.P., Belova, I.V., Murch, G.E.: Reaction of a Ni-coated Al nanoparticle to form B2-Ni−Al: A molecular dynamics study. Phil. Mag. Lett. 89, 815–830 (2009)CrossRefGoogle Scholar
  67. 67.
    Mishin, Y.: Interatomic potentials for metals. In: Yip, S. (ed.) Handbook of materials modeling. Springer, Dordrecht (2005)Google Scholar
  68. 68.
    Streitz, F.H., Mintmire, J.W.: Electrostatic potentials for metal-oxide surfaces and interfaces. Phys. Rev. B 50, 11996–12003 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. V. Evteev
    • 1
  • E. V. Levchenko
    • 1
  • I. V. Belova
    • 1
  • G. E. Murch
    • 1
  1. 1.University Centre for Mass and Thermal Transport in Engineering Materials, Priority Research Centre for Geotechnical and Materials Modelling, School of EngineeringThe University of NewcastleCallaghanAustralia

Personalised recommendations