Advertisement

New Bio-Inspired Multiphase Thermal Functional Fluid

  • José L. LageEmail author
Chapter
  • 2k Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 2)

Abstract

Efforts in harvesting the potential benefits of mimicking the gas exchange in alveolar capillary for channel heat transfer processes has led to a new bio-inspired multiphase thermal functional fluid (MTFF). This MTFF is originally conceived as encapsulated phase-change material particles, with diameter comparable to the channel size, flowing with the cooling liquid. The two main benefits of this new MTFF are not only the phase-change effect of the particles in the heat transfer process, but also the specific geometry of the particle and channel leading to the sweeping of the boundary layer in the channel. This last effect is believed to be responsible for the very high efficiency of the gas exchange taking place in the alveolar capillaries. Preliminary numerical simulation results seem to confirm the benefit of both effects. A groundbreaking experimental apparatus, designed as a pumpless flow loop, uses vortical effects created by a magnetic stirrer to set the liquid and particles of the MTFF in motion, overcoming the settling and clogging difficulties so characteristic of a multiphase fluid flow. Experimental tests, with octadecane paraffin (EPCM) particles or with acrylonitrile butadiene styrene (ABS) plastic particles (with no latent heat capacity), both flowing in water, have been performed and the results compared to results obtained with clear (of particulates) water flow. All tests indicate the advantages of using the MTFF in comparison to clear water, even at relatively low particle concentrations. Moreover, the tests seem to confirm the same behavior found in capillary blood flow, namely the detrimental effect of increasing the particle concentration beyond an optimum concentration, either leading to a reduction in the boundary layer sweeping effect or to an increased competition among particles for the heat transfer. This effort highlights the importance of learning from efficient biological systems.

Keywords

Mass Transfer Process Heat Transfer Process Capillary Membrane Heated Channel Alveolar Capillary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Darwish, T., Bayoumi, M.: Trends in low-power VLSI design. In: Chen, W-K. (ed) Electrical Engineering Handbook, vol. 3(5), pp. 263–280. Academic Press, San Diego (2005)Google Scholar
  2. 2.
    Steinke, M.E., Kandlikar, S.G.: Review of single phase heat transfer enhancement techniques for application in microchannels, minichannels and microdevices. Int. J. Heat Technol. 22(2), 3–11 (2004)Google Scholar
  3. 3.
    Charunyaorn, P., Sengupta, S., Roy, S.K.: Forced convective heat transfer in microencapsulated phase change material slurries: flow in circular ducts. Int. J. Heat Mass Transf. 34(3), 819–833 (1991)CrossRefGoogle Scholar
  4. 4.
    Sohn, C.W., Chen, M.M.: Microconvective thermal conductivity in disperse two-phase mixture as observed in a low velocity Couette flow experiment. J. Heat Transf. 103, 47–50 (1991)CrossRefGoogle Scholar
  5. 5.
    Choi, E., Cho, Y., Lorsch, H.G.: Forced convection heat transfer with phase-change-material slurries: turbulent flow in a circular tube. Int. J. Heat Mass Transf. 37(2), 207–215 (1993)Google Scholar
  6. 6.
    Goel, M., Roy, S.K., Sengupta, S.: Laminar forced convection heat transfer in microencapsulated phase change material suspensions. Int. J. Heat Mass Transf. 37(4), 593–604 (1994)CrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Faghri, A.: Analysis of forced convection heat transfer in microencapsulated phase change material suspensions. J. Thermophys. Heat Transf. 9(4), 727–732 (1995)CrossRefGoogle Scholar
  8. 8.
    Mulligan, J.C., Colvin, D.P., Bryan, Y.G.: Microencapsulated phasechange material suspensions for heat transfer in spacecraft thermal systems. J. Spacecr. Rockets 33(2), 278–284 (1996)CrossRefGoogle Scholar
  9. 9.
    Yamagishi, Y., Takeuchi, H., Pyatenko, A., Kayukawa, N.: Characteristic of microencapsulated PCM slurry as a heat-transfer fluid. AIChE J 45(4), 696–707 (1999)CrossRefGoogle Scholar
  10. 10.
    Alisetti, L., Roy, S.K.: Forced convection heat transfer to phase change material slurries in circular ducts. J. Thermophys. Heat Transf. 14(1), 115–118 (2000)CrossRefGoogle Scholar
  11. 11.
    Roy, S.K., Avanic, B.L.: Laminar forced convection heat transfer with phase change material suspensions. Int. Commun. Heat Mass Transf. 28(7), 895–904 (2001)CrossRefGoogle Scholar
  12. 12.
    Royon, L., Guiffant, G., Perrot, P.: Forced convection heat transfer in a slurry of phase change material in an agitated tank. Int. Commun. Heat Mass Transf. 27(8), 1057–1065 (2000)CrossRefGoogle Scholar
  13. 13.
    Hu, X.X., Zhang, Y.P.: Theoretical analysis of the convective heat transfer enhancement of latent functionally thermal fluid with isothermal wall. Acta Energiae Solaris Sin. 23, 626–633 (2002)Google Scholar
  14. 14.
    Hu, X.X., Zhang, Y.P.: Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminarflow in a circular tube with constant heat flux. Int. J. Heat Mass Transf. 45, 3163–3172 (2002)CrossRefGoogle Scholar
  15. 15.
    Ayel, V., Lottin, O., Peerhossaini, H.: Rheology, flow behavior and heat transfer of ice slurries: a review of the state of the art. Int. J. Refrig. 26, 95–107 (2003)CrossRefGoogle Scholar
  16. 16.
    Xin, W., Yinping, Z., Xlanxu, H.: Turbulent heat transfer enhancement of microencapsulated phase change material slurries with constant wall heat flux. Enhanced Heat Transf. 11(1), 13–22 (2003)Google Scholar
  17. 17.
    Zhang, Y.P., Hu, X.X., Wang, X.: Theoretical analysis of convective heat transfer enhancement of microencapsulated phase change material slurries. Heat Mass Transf. 40, 59–66 (2003)CrossRefGoogle Scholar
  18. 18.
    Ho, C.J., Lin, J.F., Chiu, S.Y.: Heat transfer of solid-liquid phase change material suspension in circular pipes: effects of wall conduction. Num. Heat Transf. 45((A)), 171–190 (2004)Google Scholar
  19. 19.
    Tiarks, F., Landfester, K., Antonietti, M.: Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17(3), 908–918 (2001)CrossRefGoogle Scholar
  20. 20.
    Momoda, L.A., Phelps, A.C.: Nanometer sized phase change materials for enhanced heat transfer fluid performance. US Patent US 6447692, 2002Google Scholar
  21. 21.
    Cho, J.S., Kwon, A., Cho, C.G.: Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym. Sci. 280, 260–266 (2002)CrossRefGoogle Scholar
  22. 22.
    Zhang, X.X., Fan, Y.F., Tao, X.M., Yick, K.L.: Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater. Chem. Phys. 88, 300–307 (2004)CrossRefGoogle Scholar
  23. 23.
    Luo, Y.W., Zhou, X.D.: Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. J. Polym. Sci. A Polym. Chem. 42(9), 2145–2154 (2004)CrossRefGoogle Scholar
  24. 24.
    Ozonur, Y., Mazman, M., Paksoy, H.O., Evliya, H.: Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 307, 41–749 (2006)Google Scholar
  25. 25.
    Sarier, N., Onder, E.: The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochim. Acta 452, 149–160 (2007)CrossRefGoogle Scholar
  26. 26.
    Fang, Y., Kuang, S., Gao, X., Zhang, Z.: Preparation of nanoencapsulated phase change material as latent functionally thermal fluid. J. Phys. D Appl. Phys. 42, 1–8 (2009)Google Scholar
  27. 27.
    Inaba, H., Kim, M.J., Horibe, A.: Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microencapsules having different diameters. J Heat Transf. 126(4), 558–565 (2004)CrossRefGoogle Scholar
  28. 28.
    Wang, X., Niu, J., Li, Y., Wang, X., Chen, B., Zeng, R., Song, Q., Zhang, Y.: Flow and heat transfer be behaviors of phase change material slurries in a horizontal circular tube. Int. J. Heat Mass Transf. 50, 2480–2491 (2007)CrossRefGoogle Scholar
  29. 29.
    Alvarado, J.L., Marsh, C., Sohn, C., Vilceus, M., Hock, V., Phetteplace, G., Newell, T.: Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. Int. J. Heat Mass Transf. 50, 1938–1952 (2007)CrossRefGoogle Scholar
  30. 30.
    Chen, B.J., Wang, X., Zeng, R.L., Zhang, Y.P., Wang, X.C., Niu, J.J., Li, Y., Di, H.F.: An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exp. Therm. Fluid Sci. 32, 1638–1646 (2008)CrossRefGoogle Scholar
  31. 31.
    Royon, L., Guiffant, G.: Forced convection heat transfer with slurry of phase change material in circular ducts: a phenomenological approach. Energ. Convers. Manag. 49(5), 928–932 (2008)CrossRefGoogle Scholar
  32. 32.
    Wang, X., Niu, J., Li, Y., Zhang, Y., Wang, X., Chen, B., Zeng, R., Song, Q.: Heat transfer of microencapsulated PCM slurry flow in a circular tube. AIChE J 54, 1110–1120 (2008)CrossRefGoogle Scholar
  33. 33.
    Zenga, R., Wanga, X., Chena, B., Zhanga, Y., Niub, J., Wang, X., Dia, H.: Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Appl. Energy 86, 2661–2670 (2009)CrossRefGoogle Scholar
  34. 34.
    Koulich, V.V., Lage, J.L., Hsia, C.C.W., Johnson Jr., R.L.: A porous medium model of alveolar gas diffusion. J. Porous Media 2, 263–275 (1999)Google Scholar
  35. 35.
    Kulish, V.V., Lage, J.L., Hsia, C.C.W., Johnson Jr., R.L.: Three-dimensional, unsteady simulation of alveolar respiration. ASME J. Biomech. Eng. 124, 609–616 (2002)CrossRefGoogle Scholar
  36. 36.
    Kulish, V.V., Lage, J.L.: Fundamentals of alveolar diffusion: a new modeling approach. AUTOMEDICA Int. J. Bio-Med. Engg. Technol. 20, 225–268 (2002)Google Scholar
  37. 37.
    Kulish, V.V., Sourin, A.I., Lage, J.L.: Simulation and visualization of gas diffusion in human lungs. J Vis. (The Visualization Society of Japan) 5, 260–266 (2002)Google Scholar
  38. 38.
    Kulish, V.V., Lage, J.L.: Impact of microscopic solid particles on the alveolar diffusion. In: Kulish, V. (ed.) Human respiration: anatomy and physiology, mathematical modeling, numerical simulation and applications – Advances in Bioengineering Series, vol. 3, pp. 13–22. WIT Press, Southampton (2006)CrossRefGoogle Scholar
  39. 39.
    Lage, J.L., Merrikh, A.A., Kulish, V.V.: A porous medium model to investigate the red cell distribution effect on alveolar respiration: numerical simulations to CO diffusion in the alveolar region of the lungs. Emerging Technologies and Techniques in Porous Media, vol. 25, pp. 381–407. Kluwer, Dordrecht (2004)Google Scholar
  40. 40.
    Hsia, C.C.W., Chuong, C.J.C., Johnson Jr., R.L.: Critique of conceptual basis of diffusion capacity estimates: a finite element analysis. J. Appl. Physiol. 79, 1039–1047 (1995)Google Scholar
  41. 41.
    Merrikh, A.A., Lage, J.L.: Effect of blood flow on gas transport in a pulmonary capillary. ASME J. Biomech. Eng. 127, 432–439 (2005)CrossRefGoogle Scholar
  42. 42.
    Merrikh, A.A., Lage, J.L.: The role of red cell movement on alveolar gas diffusion. Mater. Sci. Eng. Techn. 36, 497–504 (2005)Google Scholar
  43. 43.
    Merrikh, A.A., Lage, J.L.: Plasma microcirculation in alveolar capillaries: effect of parachute shaped red cells on gas exchange. Int. J. Heat Mass Transf. 51, 5712–5720 (2008)CrossRefGoogle Scholar
  44. 44.
    Merrikh, A.A.: Convection-diffusion analysis of gas transport in a pulmonary capillary. PhD Dissertation, SMU (2004)Google Scholar
  45. 45.
    Hassanipour, F., Lage, J.L.: Numerical simulation of capillary convection with encapsulated phase-change particles. Num. Heat Transf. A 55, 893–905 (2009)CrossRefGoogle Scholar
  46. 46.
    Hassanipour, F., Lage, J.L.: Preliminary experimental study of a bio-inspired, phased-change particle capillary heat exchanger. Int. J. Heat Mass Transf. 53, 3300–3307 (2010)CrossRefGoogle Scholar
  47. 47.
    Hassanipour, F., Lage, J.L.: New bio-inspired, multi-phase forced convection cooling by ABS plastic or encapsulated paraffin beads. ASME J. Heat Transf. 132, 149–152 (2010)CrossRefGoogle Scholar
  48. 48.
    Hassanipour, F.: A particulate flow heat exchanger inspired by gas diffusion in lung capillaries. PhD Dissertation, SMU (2009)Google Scholar
  49. 49.
    Ulusarslan, D., Teke, I.: An experimental investigation of the capsule velocity, concentration rate and the spacing between the capsules for spherical capsule train flow in a horizontal circular pipe. Powder Technol. 159, 27–34 (2005)CrossRefGoogle Scholar
  50. 50.
    Ulusarslan, D., Teke, I.: An experimental determination of pressure drops in the flow of low density spherical capsule train inside horizontal pipes. Exp. Therm. Fluid Sci. 30, 233–241 (2006)CrossRefGoogle Scholar
  51. 51.
    Teke, I., Ulusarslan, D.: Mathematical expression of pressure gradient in the flow of spherical capsules less dense than water. Int. J. Multiph. Flow 33, 658–674 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Bobby B. Lyle School of EngineeringSouthern Methodist UniversityDallasUSA

Personalised recommendations