Computational Model of Porous Media Using True 3-D Images

  • Khairul AlamEmail author
  • Mihnea S. Anghelescu
  • Adrian Bradu
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 2)


Thermally conductive foams are being developed for many engineering applications; and there is a need to develop analytical models to predict the thermal properties of such porous media. Most of the current models are based on volume averaging techniques, and often assume simple, ideal shapes for the pore geometry. The method described in this chapter focuses on modeling the thermal and flow properties of foams on the basis of its true microstructure. The approach is to take a three dimensional solid model of a real foam, obtained by imaging techniques, and use it as the basis for the numerical solution of the transport phenomena. This is a micro-model, in which the thermal phenomena are modeled at the pore level of the foam. The model is computationally intensive, as can be expected; but it does not require semi-empirical or experimentally derived constants such as permeability to derive a solution. By incorporating the effect of the true pore geometry on the thermal transport and fluid flow in the foam, this model is able to determine the thermal conductivity, permeability, friction factor and heat transfer coefficients. Graphitic carbon and silicon carbide foams are used in this study, but the approach that is described is quite general and can be applied to other porous media; it may also be applied to composites that contain phases with distinct boundaries at the micro-level.


Porous Medium Aluminum Foam Metal Foam Carbon Foam Reticulate Vitreous Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the support provided by the Air Force Research Laboratory (AFRL, Dayton, OH), Ultramet Inc. (Pacoima, CA) and use of HyperMesh, Abaqus, and Fluent provided by Ohio Supercomputer Center. Funding was also provided by Ohio Aerospace Institute (OAI). The authors wish to thank Dr. Benji Maruyama of AFRL, Mr. Matt Wright of Ultramet (Pacoima, CA, USA), the research staff at Graftech (Parma, OH, USA) and Dr. Dan Vrable (TMMT) for helpful discussions.


  1. 1.
    Ultramet:, Website accessed 2/16/1010 (2010)
  2. 2.
    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, UK (1997)Google Scholar
  3. 3.
    Alam, M.K., Maruyama, B.: Thermal conductivity of graphitic carbon foams. Exp. Heat Transf. 17(3), 227–241 (2004)CrossRefGoogle Scholar
  4. 4.
    Rowe, M.M., Guth, R.A., Merriman, D.J.: Case studies of carbon foam tooling. In: SAMPE 2005, Long Beach, CA, 1–5 May 2005.Google Scholar
  5. 5.
    Gallego, N.C., Klett, J.W.: Carbon foams for thermal management. Carbon 41(7), 1461–1466 (2003)CrossRefGoogle Scholar
  6. 6.
    Druma, A.: Analysis of carbon foams by finite element method. Doctoral dissertation, Ohio University, Athens, OH, USA (2005)Google Scholar
  7. 7.
    Brow, M., Watts, R., Alam, M.K., Koch, R., Lafdi, K.: Characterisation requirements for aerospace thermal management applications. In: Proceedings of SAMPE 2003, Dayton, OH, 2003Google Scholar
  8. 8.
    Chen, C., Kennel, E., Stiller, A., Stansberry, P., Zondlo, J.: Carbon foam derived from various precursors. Carbon 44(8), 1535–1543 (2006)CrossRefGoogle Scholar
  9. 9.
    Alam, M.K., Anghelescu, M.: Analysis of deformation and residual stresses in composites processed on a carbon foam tooling. J. Compos. Mater. 43(19), 2057–2070 (2009)CrossRefGoogle Scholar
  10. 10.
    Spradling, D., Guth, R.: Carbon foams. Adv. Mater. Process 161(11), 29–31 (2003)Google Scholar
  11. 11.
    Bauer, T.H.: A general analytical approach toward the thermal conductivity of porous media. Int. J. Heat Mass Transf. 36(17), 4181 (1993)CrossRefGoogle Scholar
  12. 12.
    Anghelescu, M.S., Alam, M.K., Maruyama, B.: Evaluation of thermal transport from accurate 3D geometry of carbon foam. In: Proceedings of the SAMPE’09 Conference, Baltimore, MD, 18–21 May 2009Google Scholar
  13. 13.
    Druma, A.M., Alam, M.K., Druma, C.: Analysis of thermal conduction in carbon foams. Int. J. Therm. Sci. 43(7), 689–695 (2004)CrossRefGoogle Scholar
  14. 14.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism. Oxford University Press, New York (1954)Google Scholar
  15. 15.
    Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth Heinemann, Oxford, UK (2000)Google Scholar
  16. 16.
    Klett, J., McMillan, A., Gallego, N., Walls, C.: The role of structure on the thermal properties of graphitic foams. J. Mater. Sci. 39(11), 3659–3676 (2004)CrossRefGoogle Scholar
  17. 17.
    Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24(2), 195–203 (1981)CrossRefGoogle Scholar
  18. 18.
    Calmidi, V.V.: Transport phenomena in high porosity metal foams. Doctoral dissertation, University of Colorado, Boulder, CO, USA (1998)Google Scholar
  19. 19.
    Nield, D.A., Bejan, A.: Convection in Porous Media, 2nd edn. Springer-Verlag, New York (1992)Google Scholar
  20. 20.
    Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, New York (1995)Google Scholar
  21. 21.
    Hunt, M.L., Tien, C.L.: Effects of thermal dispersion on forced convection in fibrous media. Int. J. Heat Mass Transf. 31(2), 301–309 (1988)CrossRefGoogle Scholar
  22. 22.
    Beavers, G.S., Sparrow, M.: Non-Darcy flow through fibrous porous media. J. Appl. Mech. Trans. ASME 36(4), 711–714 (1969)Google Scholar
  23. 23.
    Paek, J.W., Kang, B.H., Kim, S.Y., Hyun, J.M.: Effective thermal conductivity and permeability of aluminum foam materials. Int. J. Thermophys. 21(2), 453–464 (2000)CrossRefGoogle Scholar
  24. 24.
    Boomsma, K., Poulikakos, D.: The effect of compression and pore size variations on the liquid flow characteristics in metal foams. J. Fluid. Eng. Trans. ASME 124(1), 263 (2002)CrossRefGoogle Scholar
  25. 25.
    Antohe, B.V., Lage, J.L., Price, D.C., Weber, R.M.: Experimental determination of permeability and inertia coefficients of mechanically compressed aluminum porous matrices. J. Fluid. Eng. Trans. ASME 119(2), 404–412 (1997)CrossRefGoogle Scholar
  26. 26.
    Straatman, A.G., Gallego, N.C., Yu, Q., Betchen, L., Thompson, B.E.: Forced convection heat transfer and hydraulic losses in graphitic foam. J. Heat Transf. Trans. ASME 129(9), 1237–1245 (2007)CrossRefGoogle Scholar
  27. 27.
    Vafai, K., Tien, C.L.: Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Transf. 25(8), 1183–1190 (1982)CrossRefGoogle Scholar
  28. 28.
    Calmidi, V.V., Mahajan, R.L.: Forced convection in high porosity metal foams. J. Heat. Transf. Trans. ASME 122(3), 557–565 (2000)CrossRefGoogle Scholar
  29. 29.
    Sihn, S., Roy, A.K.: Modeling and prediction of bulk properties of open-cell carbon foam. J. Mech. Phys. Solids 52(1), 167–191 (2004)CrossRefGoogle Scholar
  30. 30.
    Druma, C., Alam, M.K., Druma, A.M.: Finite element model of thermal transport in carbon foams. J. Sandw. Struct. Mater. 6(6), 527 (2004)CrossRefGoogle Scholar
  31. 31.
    Yu, Q., Thompson, B.E., Straatman, A.G.: A unit cube-based model for heat transfer and fluid flow in porous carbon foam. J. Heat Transf. Trans. ASME 128(4), 352–360 (2006)CrossRefGoogle Scholar
  32. 32.
    Li, K., Gao, X.L., Roy, A.K.: Micromechanical modeling of three-dimensional open-cell foams using the matrix method for spatial frames. Compos. Part B Eng. 36(3), 249–262 (2005)CrossRefGoogle Scholar
  33. 33.
    Krishnan, S., Murthy, J.Y., Garimella, S.V.: Direct simulation of transport in open-cell metal foam. J. Heat Transf. 128(8), 793 (2006)CrossRefGoogle Scholar
  34. 34.
    Karimian, S.A.M., Straatman, A.G.: CFD study of the hydraulic and thermal behavior of spherical-void-phase porous materials. Int. J. Heat Fluid Flow 29(1), 292–305 (2008)CrossRefGoogle Scholar
  35. 35.
    Karimian, S.A.M., Straatman, A.G.: Numerical modeling of multidirectional flow and heat transfer in graphitic foams. J. Heat Transf. 131(5), 052602 (2009)CrossRefGoogle Scholar
  36. 36.
    Anghelescu, M.S.: Thermal and mechanical analysis of carbon foam. Doctoral dissertation, Ohio University, Athens, OH, USA (2008)Google Scholar
  37. 37.
    Maruyama, B., Spowart, J.E., Hooper, D.J., Mullens, H.M., Druma, A.M., Druma, C., Alam, M.K.: A new technique for obtaining three-dimensional structures in pitch-based carbon foams. Scripta Mater. 54(9), 1709–1713 (2006)CrossRefGoogle Scholar
  38. 38.
    Fiedler, T., Solorzano, E., Garcia-Moreno, F., Ochsner, A., Belova, I.V., Murch, G.E.: Lattice Monte Carlo and experimental analyses of the thermal conductivity of random-shaped cellular aluminum. Adv. Eng. Mater. 10(11), 843–847 (2009)CrossRefGoogle Scholar
  39. 39.
    Hugo, J.-M., Brun, B., Topin, F., Vicente, J.: Conjugate heat and mass transfer in metal foams: a numerical study for heat exchanger design. In: Proceedings of the DSL 2009 Conference, Rome, Italy, 24–26 June 2009Google Scholar
  40. 40.
    Amira:, Website accessed 2/9/2010 (2010)
  41. 41.
    Bhattacharya, A., Mahajan, L.: Finned metal foam heat sinks for electronics cooling in forced convection. J. Electron. Packag. 124(3), 155–163 (2002)CrossRefGoogle Scholar
  42. 42.
    Boomsma, K., Poulikakos, D., Zwick, F.: Metal foams as compact high performance heat exchangers. Mech. Mater. 35(12), 1161–1176 (2003)CrossRefGoogle Scholar
  43. 43.
    Ansys Fluent Inc.: FLUENT (6.3) (Computer software). Canonsburg, PA, USA (2006)Google Scholar
  44. 44.
    Altair Engineering: Hypermesh (8.0) (Computer software), Troy, MI, USA (2007)Google Scholar
  45. 45.
    Wright, M.: Ultramet, Inc., Pacoima, CA, USA. Personal communication (2010)Google Scholar
  46. 46.
    Anghelescu, M.S., Alam, M.K.: Finite element modeling of forced convection heat transfer in carbon foams. In: Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, 2006Google Scholar
  47. 47.
    Alam, M.K.: Thermal modeling of flow through foam. Final report to Ultramet, Sept. 20, 2005 (2005)Google Scholar
  48. 48.
    Druma, A., Alam, M.K., Druma, C.: Surface area and conductivity of open-cell carbon foams. Journal of Minerals & Materials Characterization & Engineering 5(1), 73–86 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Khairul Alam
    • 1
    Email author
  • Mihnea S. Anghelescu
    • 1
  • Adrian Bradu
    • 1
  1. 1.Department of Mechanical EngineeringOhio UniversityAthensUSA

Personalised recommendations