Advertisement

Predictions of Effective Thermal Conductivity of Complex Materials

  • Ramvir SinghEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 2)

Abstract

In this review, a comprehensive and systematic effort is made to incorporate the most significant and popular models for calculation of the effective thermal conductivity of complex materials and discuss their limitations. A brief review of the numerical techniques for prediction of the effective thermal conductivity of multi-phase materials is presented and discussed. The real structures and geometries around us are so vast and vivid, that one cannot use a single model to estimate effective thermal conductivity of complex materials in the whole range due to their inherent limitations.

Keywords

Thermal Conductivity Porous Medium Effective Thermal Conductivity Conductivity Ratio Metal Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

I wish to sincerely thank Dr. V. S. Kulhar, Associate Professor, Department of Physics, University of Rajasthan, Jaipur, India for helpful suggestions, which have certainly improved both the content and quality of the material.

References

  1. 1.
    Fourier, J.B.: Theorie analytique de la chaleur, Paris, English translation by A. Freeman. Dover Publication Inc., New York (1955)Google Scholar
  2. 2.
    Maxwell, J.C.: A Treatise of Electricity and Magnetism, 3rd edn. Clarendon, Oxford (1904)Google Scholar
  3. 3.
    Fricke, H.: A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys. Rev. 24, 575 (1924)CrossRefGoogle Scholar
  4. 4.
    Burgers, H.C.: Generalized Maxwell’s approach to ellipsoidal particles. Phys. Z. 20, 73 (1919)Google Scholar
  5. 5.
    De Vries, D.A.: The thermal conductivity of soil. Meddelingen Van de Landbouwhoge School Te Wageningen (English translation) 52(1), 1–73 (1952)Google Scholar
  6. 6.
    Bruggeman, D.A.G.: Dielectric constant and conductivity of mixtures of isotropic materials. Ann. Phys. 24, 636 (1935)CrossRefGoogle Scholar
  7. 7.
    Rayleigh, L.: On the influence of obstacles arranged in rectangular order upon the properties of medium. Philos. Mag. 34, 481–502 (1892)Google Scholar
  8. 8.
    Weiner, O.: Lamellare Doppelbrechung. Phys. Z. 5, 332 (1904)Google Scholar
  9. 9.
    Woodside, W., Messmer, J.H.: Thermal conductivity of porous media. I. Unconsolidated sands. J. Appl. Phys. 32, 1688 (1961)CrossRefGoogle Scholar
  10. 10.
    Bernshtein, R.S.: Studies of Burning Processes of Natural Fuels. State Power Press, Moscow (1948)Google Scholar
  11. 11.
    Lichtnecker, K.: Logarithmic law of mixing. Phys. Z. (Germany) 27, 115 (1926)Google Scholar
  12. 12.
    Russel, H.W.: Principles of heat flow in porous insulators. J. Am. Ceram. Soc. 18, 1–5 (1935)CrossRefGoogle Scholar
  13. 13.
    Ribaud, M.: Theoretical study of thermal conductivity of porous and pulverulent materials. Chaleur. Ind. 18, 36 (1937)Google Scholar
  14. 14.
    Powers, A.E.: Conductivity in aggregates. Res. Dev. Rep. KAPL-2145 (1961)Google Scholar
  15. 15.
    Bogomolov, V.Z.: Heat transfer in dispersed body. Trans. Phys. Astron. Inst., Agriculture Press (1941)Google Scholar
  16. 16.
    Assad, Y.: A study of the thermal conductivity of fluid bearing porous rocks. Ph.D. thesis, University of California, USA (1955)Google Scholar
  17. 17.
    Kunni, M., Smith, J.M.: Heat transfer characteristics of porous rocks. AIChE J. 6, 71 (1960)CrossRefGoogle Scholar
  18. 18.
    Sugawara, A., Yoshizawa, Y.: An investigation on the thermal conductivity of porous materials and its application to porous rock. Aust. J. Phys. 14, 469 (1961)CrossRefGoogle Scholar
  19. 19.
    Sugawara, A.: Jpn. J. Appl. Phys. (Japan) 30, 899 (1961)Google Scholar
  20. 20.
    Chaudhary, D.R., Bhandari, R.C.: Heat transfer through dispersed medium. Indian J. Pure Appl. Phys. 6, 135 (1968)Google Scholar
  21. 21.
    Cheng, S.C., Vachon, R.I.: The prediction of thermal conductivity of two and three phase solid heterogeneous mixtures. Int. J. Heat Mass Transf. 12, 249 (1969)CrossRefGoogle Scholar
  22. 22.
    Hashin, Z., Strikman, S.: A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125 (1962)CrossRefGoogle Scholar
  23. 23.
    Prager, S.: Variational treatment of hydrodynamic interaction on polymers. J. Chem. Phys. 50, 4305 (1969)CrossRefGoogle Scholar
  24. 24.
    Schulgasser, K.: On the conductivity of fiber reinforced materials. J. Math. Phys. 17, 382 (1976)CrossRefGoogle Scholar
  25. 25.
    Hori, M.: Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials. II. Bounds for the effective permittivity of statistically anisotropic materials. J. Math. 14, 514 (1973)Google Scholar
  26. 26.
    Kumar, V., Chaudhary, D.R.: Prediction of effective thermal conductivity of two-phase porous materials using resistor model. Indian J. Pure Appl. Phys. 18, 984 (1980)Google Scholar
  27. 27.
    Pande, R.N., Kumar, V., Chaudhary, D.R.: Bounds on the effective thermal conductivity of two-phase systems. Pramana J. Phys. 20, 339–346 (1983)CrossRefGoogle Scholar
  28. 28.
    Zimmerman, R.W.: Thermal conductivity of fluid-saturated rocks. J. Petrol. Sci. Eng. 3, 219 (1989)CrossRefGoogle Scholar
  29. 29.
    Torquato, S., Rintoul, M.D.: Effect of the interface on the properties of composite media. Phys. Rev. Lett. 75, 4067 (1995)CrossRefGoogle Scholar
  30. 30.
    Pande, R.N., Kumar, V., Chaudhary, D.R.: Thermal conduction in a homogeneous two phase system. Pramana J. Phys. 22, 63–70 (1984)CrossRefGoogle Scholar
  31. 31.
    Pande, R.N., Chaudhary, D.R.: Thermal conduction through loose and granular two-phase materials at normal pressure. Pramana J. Phys. 23, 599 (1984)CrossRefGoogle Scholar
  32. 32.
    Hadley, G.R.: Thermal conductivity of packed metal powders. Int. J. Heat Mass Transf. 20, 909 (1986)CrossRefGoogle Scholar
  33. 33.
    Verma, L.S., Shrotriya, A.K., Singh, R., Chaudhary, D.R.: Thermal conduction in two-phase materials with spherical and non-spherical inclusions. J. Phys. D Appl. Phys. 24, 1729 (1991)CrossRefGoogle Scholar
  34. 34.
    Misra, K., Shrotriya, A.K., Singh, R., Chaudhary, D.R.: Porosity correction for thermal conduction in real two-phase systems. J. Phys. D Appl. Phys. 27, 732 (1994)CrossRefGoogle Scholar
  35. 35.
    Hsu, C.T., Cheng, P., Wong, K.W.: A lumped parameter model for stagnant thermal conductivity of spatially periodic porous media. ASME J. Heat Transf. 117, 264–269 (1995)CrossRefGoogle Scholar
  36. 36.
    Singh, K.J., Singh, R., Chaudhary, D.R.: Heat conduction and a porosity correction term for spherical and cubic particles in a simple cubic packing. J. Phys. D Appl. Phys. 31, 1681 (1998)CrossRefGoogle Scholar
  37. 37.
    Boomsma, K., Poulikakos, D.: On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int. J. Heat Mass Transf. 44, 827 (2001)CrossRefGoogle Scholar
  38. 38.
    Calmidi, V.V., Mahajan, R.L.: The effective thermal conductivity of high porosity fibrous metal foams. J. Heat Transf. 121, 466 (1999)CrossRefGoogle Scholar
  39. 39.
    Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017 (2002)CrossRefGoogle Scholar
  40. 40.
    Lu, T.J., Chen, C.: Thermal transport and fire retardance properties of cellular aluminum alloys. Acta Mater 47, 1469 (1999)CrossRefGoogle Scholar
  41. 41.
    Feng, Y., Yu, B., Zou, M., Zhang, D.: A generalized model for the effective thermal conductivity of porous media based on self-similarity. J. Phys. D Appl. Phys. 37, 3030–3040 (2004)CrossRefGoogle Scholar
  42. 42.
    Singh, R., Kasana, H.S.: Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng. 24, 1841 (2004)CrossRefGoogle Scholar
  43. 43.
    Jagjiwanram Singh, R.: Effective thermal conductivity of highly porous two-phase systems. Appl. Therm. Eng. 24, 2727 (2004)CrossRefGoogle Scholar
  44. 44.
    Singh, R., Sharma, P.: Effective thermal conductivity of polymer composites. Adv. Eng. Mater. 10, 366–370 (2008)CrossRefGoogle Scholar
  45. 45.
    Singh, R., Sharma, P., Bhoopal, R.S., Verma, L.S.: Prediction of effective thermal conductivity of cellular and polymer composites, Indian J. Pure Appl. Phys. Submitted for publication (2010)Google Scholar
  46. 46.
    Krischer, O.: Trocknungstechnik Band I, Die wissenschaftlichen Grundlagen der Trocknungstechnik. Springer Verlag, Berlin (1978)Google Scholar
  47. 47.
    Carson, J.K., Lovatt, S.J., Tanner, D.J., Cleland, A.C.: Thermal conductivity bounds for isotropic, porous materials. Int. J. Heat Mass Transf. 48, 2150–2158 (2005)CrossRefGoogle Scholar
  48. 48.
    Alharthi, A., Lange, J.: Soil water saturation: dielectric determination. Water Resour. Res. 23, 591–595 (1987)CrossRefGoogle Scholar
  49. 49.
    Batchelor, G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A Math. Phys. Sci. 355, 313–333 (1977)CrossRefGoogle Scholar
  50. 50.
    Birchak, J.R., Gardner, C.G., Hipp, J.E., Victor, J.M.: High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE 62, 93–98 (1974)CrossRefGoogle Scholar
  51. 51.
    Cosenza, P., Guerin, R., Tabbagh, A.: Relationship between thermal conductivity and water content of soils using numerical modelling. Eur. J. Soil Sci. 54, 581–587 (2003)CrossRefGoogle Scholar
  52. 52.
    Friedman, S.P.: Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agr. 46, 45–70 (2005)CrossRefGoogle Scholar
  53. 53.
    Hallikainen, M.T., Ulaby, F.T., Dobson, M.C., Elrayes, M.A., Wu, L.K.: Microwave dielectric behavior of wet soil. 1. Empirical-models and experimental observations. IEEE Trans. Geosci. Rem. Sens. 23, 25–34 (1985)CrossRefGoogle Scholar
  54. 54.
    Jacobsen, O.H., Schjonning, P.: A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk density and texture. J. Hydrol. 151, 147–157 (1993)CrossRefGoogle Scholar
  55. 55.
    Jones, S.B., Or, D.: Modeled effects on permittivity measurements of water content in high surface area porous media. Physica B 338, 284–290 (2003)CrossRefGoogle Scholar
  56. 56.
    Miyamoto, T., Annaka, T., Chikushi, J.: Soil aggregate structure effects on dielectric permittivity of an andisol measured by time domain reflectometry. Vadose Zone J. 2, 90–97 (2003)Google Scholar
  57. 57.
    Topp, G.C., Davis, J.L., Annan, A.P.: Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res. 16, 574–582 (1980)CrossRefGoogle Scholar
  58. 58.
    Wang, J.R., Schmugge, T.J.: An empirical model for the complex dielectric permittivity of soils as a function of water content. AIEEE Trans. Geosci. Rem. Sens. 18, 288–295 (1980)CrossRefGoogle Scholar
  59. 59.
    Whalley, W.R.: Considerations on the use of time domain reflectometry (TDR) for measuring soil water. J. Soil Sci. 44, 1–9 (1993)CrossRefGoogle Scholar
  60. 60.
    Chandrakanthi, M., Mehrotra, A.K., Hettiaratchi, J.P.A.: Thermal conductivity of leaf compost used in bio-filters: an experimental and theoretical investigation. Environ. Pollut. 136, 167–174 (2005)CrossRefGoogle Scholar
  61. 61.
    de Veris, D.A., Wijk, WRv: Physics of Plant Environment, pp. 210–235. North-Holland Publishing Company, Amsterdam (1963)Google Scholar
  62. 62.
    Brailsford, A.D., Major, K.G.: Thermal conductivity of aggregates of several phases, including porous materials. Br. J. Appl. Phys. 15, 313 (1964)CrossRefGoogle Scholar
  63. 63.
    Chaudhary, D.R., Bhandari, R.C.: Heat transfer through a three-phase medium. Br. J. Appl. Phys. Ser. 2 1, 815–817 (1968)Google Scholar
  64. 64.
    Singh, R., Beniwal, R.S., Kumar, V.: Effective thermal conductivity of three-phase systems. Indian J. Pure Appl. Phys. 22, 556–558 (1984)Google Scholar
  65. 65.
    De Loor, G.P.: Dielectric behaviour of heterogeneous mixtures. Appl. Sci. Res. B Elect. Acoust. Optic. Math Methods 11, 310 (1964)Google Scholar
  66. 66.
    De Loor, G.P.: The dielectric properties of wet soils. The Netherlands Remote Sensing Board: BCRS Report 90–13, 1–39 (1990)Google Scholar
  67. 67.
    Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., Elrayes, M.A.: Microwave dielectric behavior of wet soil, Part II: Dielectric mixing models. IEEE Trans. Geosci. Rem. Sens. 23, 35–46 (1985)CrossRefGoogle Scholar
  68. 68.
    Verma, L.S., Shrotriya, A.K., Singh, R., Chaudhary, D.R.: Prediction and measurement of effective thermal conductivity of three-phase systems. J. Phys. D. Appl. Phys. 24, 1515–1526 (1991)CrossRefGoogle Scholar
  69. 69.
    Beniwal, R.S., Singh, R., Pande, R.N., Kumar, V., Chaudhary, D.R.: Thermal conduction in heterogeneous multi-phase systems. Indian J. Pure Appl. Phys. 23, 289–294 (1985)Google Scholar
  70. 70.
    Singh, A.K., Singh, R., Chaudhary, D.R.: Prediction of effective thermal conductivity of moist porous materials. J. Phys. D Appl. Phys. 23, 698–702 (1990)CrossRefGoogle Scholar
  71. 71.
    Singh, R., Beniwal, R.S., Chaudhary, D.R.: Thermal conduction of multi-phase systems at normal and different interstitial air pressures. J. Phys. D Appl. Phys. 20, 917–922 (1987)CrossRefGoogle Scholar
  72. 72.
    Moosavi, A., Sarkomaa, P.: The effective conductivity of three-phase composite materials with circular cylindrical inclusions. J. Phys. D Appl. Phys. 36, 1644–1650 (2003)CrossRefGoogle Scholar
  73. 73.
    Gori, F., Corasaniti, S.: Experimental measurement and theoretical prediction of thermal conductivity two and three-phase water/olivine systems. Int. J. Thermophys. 24, 1339–1353 (2003)CrossRefGoogle Scholar
  74. 74.
    Gori, F.: Theoretical model for predicting the effective thermal conductivity of unsaturated frozen soils. In: Proc. Fourth Int. Conf. on Permafrost, Fairbanks, Alaska, 1983, pp. 363–368.Google Scholar
  75. 75.
    Ma, Y., Yu, B., Zhang, D., Zou, M.: A self-similarity model for effective thermal conductivity of porous media. J. Phys D Appl. Phys. 36, 2157–2164 (2003)CrossRefGoogle Scholar
  76. 76.
    Ma, Y., Yu, B., Zhang, D., Zou, M.: Fractal geometry model for effective thermal conductivity of three-phase porous media. J. Appl. Phys. 95, 6426–6433 (2004)CrossRefGoogle Scholar
  77. 77.
    Gerstner, P., Paltakari, J., Gane, P.A.C.: A lumped parameter model for thermal conductivity of paper coatings. Transport Porous Med. 78, 1–9 (2009)CrossRefGoogle Scholar
  78. 78.
    Torquato, S., Kim, I.C., Cule, D.: Effective conductivity, dielectric constant and diffusion coefficient of digitized composite media. J. Appl. Phys. 85, 1560–1571 (1999)CrossRefGoogle Scholar
  79. 79.
    Zhang, H.F., Ge, X.S., Ye, H.: Randomly mixed model for predicting the effective thermal conductivity of moist porous media. J. Phys. D Appl. Phys. 39, 220–226 (2006)CrossRefGoogle Scholar
  80. 80.
    Tacher, L., Perrochet, P., Parriaux, A.: A generation of granular media. Transport Porous Med. 26, 99–107 (1997)CrossRefGoogle Scholar
  81. 81.
    Pilotti, M.: Generation of realistic porous media by grains sedimentation. Transport Porous Med. 33, 257–278 (1998)CrossRefGoogle Scholar
  82. 82.
    Yang, A., Miller, C.T., Turcoliver, L.D.: Simulation of correlated and uncorrelated packing of random size spheres. Phys. Rev. E 53, 1516–1524 (1996)CrossRefGoogle Scholar
  83. 83.
    Li, Y.S., LeBoeuf, E.J., Basu, P.K., Mahadevan, S.: Stochastic modeling of the permeability of randomly generated porous media. Adv Water Resour. 28, 835–844 (2005)CrossRefGoogle Scholar
  84. 84.
    Mori, Y., Hopmans, J.W., Mortensen, A.P., Kluitenberg, G.J.: Estimation of vadose zone water flux from multi-functional heat pulse probe measurements. Soil Sci. Soc. Am. J. 69, 599–606 (2005)CrossRefGoogle Scholar
  85. 85.
    Mortensen, A.P., Hopmans, J.W., Mori, Y., Simunek, J.: Multi-functional heat pulse probe measurements of coupled vadose zone flow and transport. Adv. Water Resour. 29, 250–267 (2006)CrossRefGoogle Scholar
  86. 86.
    Li, D.S., Saheli, G., Khaleel, M., Garmestani, H.: Quantitative prediction of effective conductivity in anisotropic heterogeneous media using two-point correlation functions. Comput. Mater. Sci. 38, 45–50 (2006)CrossRefGoogle Scholar
  87. 87.
    Makrodimitris, K., Papadopoulos, G.K., Philippopoulos, C., Theodorou, D.N.: Parallel tempering method for reconstructing isotropic and anisotropic porous media. J. Chem. Phys. 117, 5876–5884 (2002)CrossRefGoogle Scholar
  88. 88.
    Losic, N., Thovert, J.F., Adler, P.M.: Reconstruction of porous media with multiple solid phases. J. Colloid Interface Sci. 186, 420–433 (1997)CrossRefGoogle Scholar
  89. 89.
    Torquato, S.: Modeling of physical properties of composite materials. Int. J. Solids Struct. 37, 411–422 (1999)CrossRefGoogle Scholar
  90. 90.
    Young, I.M., Crawford, J.W., Rappoldt, C.: New methods and models for characterising structural heterogeneity of soil. Soil Till. Res. 61, 33–45 (2001)CrossRefGoogle Scholar
  91. 91.
    Torquato, S.: Statistical description of microstructures. Annu. Rev. Mater. Res. 32, 77–111 (2002)CrossRefGoogle Scholar
  92. 92.
    Adler, P.M.: Porous Media: Geometry and Transports. Butterworth/Heinemann, Stoneham (1992)Google Scholar
  93. 93.
    Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)Google Scholar
  94. 94.
    Pan, N.: Physics of Fibrous Soft Matters. Higher Education Publishing, Inc., Beijing (2005)Google Scholar
  95. 95.
    Pan, N., Gibson, P.: Thermal and Moisture Transport in Fibrous Material. Woodhead Publishing Ltd, Cambridge, UK (2006)CrossRefGoogle Scholar
  96. 96.
    Mohanty, S.: Effect of multiphase fluid saturation on the thermal conductivity of geologic media. J. Phys. D Appl. Phys. 30, L80–L84 (1997)CrossRefGoogle Scholar
  97. 97.
    Wang, M., Wang, J., Pan, N., Chen, S., He, J.: Three-dimensional effect on the effective thermal conductivity of porous media. J. Phys. D Appl. Phys. 40, 260 (2007)CrossRefGoogle Scholar
  98. 98.
    Wang, M., Pan, N.: Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf. 51, 1325 (2008)CrossRefGoogle Scholar
  99. 99.
    Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R 63, 1–30 (2008)CrossRefGoogle Scholar
  100. 100.
    He, X.Y., Chen, S.Y., Doolen, G.D.: A novel thermal model for the lattice boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)CrossRefGoogle Scholar
  101. 101.
    Peng, Y., Shu, C., Chew, Y.T.: Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys. Rev. E 68, 026701 (2003)CrossRefGoogle Scholar
  102. 102.
    Peng, Y., Shu, C., Chew, Y.T.: A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity. J. Comput. Phys. 193, 260–74 (2003)CrossRefGoogle Scholar
  103. 103.
    D’Orazio, A., Succi, S.: Boundary conditions for thermal lattice boltzmann simulations. In: Computational Science – ICCS 2003, Pt. I Proceedings, Heidelberg, vol. 2657, pp. 977–986 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of RajasthanJaipurIndia

Personalised recommendations