Heat Transfer in Polyolefin Foams

  • Marcelo AntunesEmail author
  • José Ignacio Velasco
  • Eusebio Solórzano
  • Miguel Ángel Rodríguez‐Pérez
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 2)


This chapter is dedicated to the study of heat transfer in polyolefin-based foams, particularly thermal conductivity, as a function of their structure and chemical composition. A small review of the main experimental techniques used to measure the thermal conductivity of these materials is also given, focusing on the transient plane source method (TPS), as well as different theoretical models commonly used for estimating its value. Alongside cellular structure (cell size, anisotropy, etc) and composition considerations, particular importance is given to the analysis of the presence of micrometric and nanometric-sized fillers in the resulting cellular composite thermal properties. This is a novel research field of particular interest, thought to extend the application range of these lightweight materials by tailoring their conductivity.


Carbon Nanofibres Cell Wall Thickness Polymer Foam Composite Foam Laser Flash Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial assistance from the Local Government (Junta of Castile and Leon, Excellence Group GR39), Spanish Ministry of Science and Innovation and FEDER program (projects MAT 2007-62956, MAT 2009 14001-C02-01 and postdoctoral grant 2008-0946) is gratefully acknowledged.


  1. 1.
    Glicksman, L.R.: Heat transfer in foams. In: Hilyard, N.C., Cunningham, A. (eds.) Low Density Cellular Plastics: Physical Basis of Behaviour, 1st edn. Chapman and Hall, UK (1994)Google Scholar
  2. 2.
    Leach, A.G.: The thermal conductivity of foams. I. Models for heat conduction. J Phys D Appl Phys 26, 733–739 (1993)CrossRefGoogle Scholar
  3. 3.
    Shen, J., Han, X., Lee, L.J.: Nanoscaled reinforcement of polystyrene foams using carbon nanofibers. J Cell Plast 42, 105–126 (2006)CrossRefGoogle Scholar
  4. 4.
    Yang, Y., Gupta, M.C., Dudley, K.L., Lawrence, R.W.: Conductive carbon nanofiber–polymer foam structures. Adv Mater 17, 1999–2003 (2005)CrossRefGoogle Scholar
  5. 5.
    Yang, Y., Gupta, M.C., Dudley, K.L., Lawrence, R.W.: Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5, 2131–2134 (2005)CrossRefGoogle Scholar
  6. 6.
    Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Cambridge University Press, Cambridge (1997)Google Scholar
  7. 7.
    Mills, N.J., Gilcrist, A.: Creep and recovery of polyolefin foams – deformation mechanisms. J Cell Plast 33, 264–292 (1997)Google Scholar
  8. 8.
    Rodríguez-Pérez, M.A.: Crosslinked polyolefin foams: production, structure, properties, and applications. Adv Polym Sci 184, 97–126 (2005)CrossRefGoogle Scholar
  9. 9.
    Mills, N.: Polymer Foams Handbook, Engineering and Biomechanics Applications and Design Guide, 1st edn, pp. 46–47. Elsevier, Oxford (2007)Google Scholar
  10. 10.
    Klempner, D., Sendijarevic, V.: Polymeric Foams and Foam Technology, 2nd edn, pp. 275–288. Hanser, Munich (2004)Google Scholar
  11. 11.
    Martini, J.E., Suh, N.P., Waldman, F.A.: US Patent 4,473,665, 1984Google Scholar
  12. 12.
    Puri, R.R., Collington, K.T.: The production of cellular crosslinked polyolefins. 2. The injection-molding and press molding techniques. Cell Polym 7, 219–231 (1988)Google Scholar
  13. 13.
    UK Zotefoams: High performance polymers 2 (1999)Google Scholar
  14. 14.
    Goel, S.K., Beckman, E.J.: Generation of microcellular polymeric foams using supercritical carbon dioxide 1. Effect of pressure and temperature on nucleation. Polym Eng Sci 34, 1137–1147 (1994)CrossRefGoogle Scholar
  15. 15.
    Antunes, M., Haurie, L., Velasco, J.I.: Characterization of highly filled magnesium hydroxide-polypropylene composite foams. J Cell Plast. doi:10.1177/0021955X10370186 (2010)Google Scholar
  16. 16.
    Antunes, M., Realinho, V., Martínez, A.B., Solórzano, E., Rodríguez-Pérez, M.A., Velasco, J.I.: Heat transfer of mineral-filled polypropylene foams. Def Diff Forum 297–301, 990–995 (2010)CrossRefGoogle Scholar
  17. 17.
    Perry, D.L., Phillips, S.L.: Handbook of Inorganic Compounds. CRC, Boca Raton (1995)Google Scholar
  18. 18.
    Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87, 215502 (2001)CrossRefGoogle Scholar
  19. 19.
    Antunes, M., Velasco, J.I., Realinho, V., Arencón, D.: Characterization of carbon nanofibre-reinforced polypropylene foams. J Nanosci Nanotechnol 10, 1241–1250 (2010)CrossRefGoogle Scholar
  20. 20.
    Antunes, M., Realinho, V., Solórzano, E., Rodríguez-Pérez, M.A., de Saja, J.A., Velasco, J.I.: Thermal conductivity of carbon nanofibre–polypropylene composite foams. Def Diff Forum 297–301, 996–1001 (2010)CrossRefGoogle Scholar
  21. 21.
    Tye, R.P.: Proceedings of the “Cellular Polymers, an International Conference”. Rapra Technology Ltd, London (1991)Google Scholar
  22. 22.
    Tye, R.P., Coumou, K.G.: High Temp High Press 13, 695–704 (1981)Google Scholar
  23. 23.
    ASTM E1225 – 04 Standard test method for thermal conductivity of solids by means of the guarded–comparative–longitudinal heat flow techniqueGoogle Scholar
  24. 24.
    ISO 8302:1991; Thermal insulation – determination of steady-state thermal resistance and related properties – guarded hot plate apparatusGoogle Scholar
  25. 25.
    ISO 13787:2003 Thermal insulation products for building equipment and industrial installationsGoogle Scholar
  26. 26.
    Log, T., Gustafsson, S.E.: Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater 19, 43–49 (1995)CrossRefGoogle Scholar
  27. 27.
    Miller, M.G., Keith, J.M., King, J.A., Edwards, B.J., Klinkenberg, N.: Measuring thermal conductivities of anisotropic synthetic graphite–liquid crystal polymer composites. Polym Compos 27, 388–394 (2006)CrossRefGoogle Scholar
  28. 28.
    Baba, T., Ono, A.: Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas Sci Technol 12, 2046–2057 (2001)CrossRefGoogle Scholar
  29. 29.
    ASTM E1461-07 Standard test method for thermal diffusivity by the flash methodGoogle Scholar
  30. 30.
    E1461-92 Standard test method for thermal diffusivity of solids by the flash methodGoogle Scholar
  31. 31.
    Tye, R.P., Kubicàr, L., Lockmuller, N.: The development of a standard for contact transient methods of measurement of thermophysical properties. Int. J. Thermophy 26, 1917–1938 (2005)CrossRefGoogle Scholar
  32. 32.
    Bouguerra, A., Ait-Mokhtar, A., Amiri, O., Diop, M.B.: Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building materials using transient plane source technique. Int Commun Heat Mass Transf 28, 1065–1078 (2001)CrossRefGoogle Scholar
  33. 33.
    Saxena, N.S.G., Pradeep, P., Mathew, G., Thomas, S., Gustafsson, M., Gustafsson, S.E.: Thermal conductivity of styrene butadiene rubber compounds with natural rubber prophylactics waste as filler. Eur Polym J 35, 1687–1693 (1999)CrossRefGoogle Scholar
  34. 34.
    Grujicic, M., Zhao, C.L., Biggers, S.B., Morgan, D.R.: Experimental investigation and modeling of effective thermal conductivity and its temperature dependence in a carbon-based foam. J Mater Sci 41, 2309–2317 (2006)CrossRefGoogle Scholar
  35. 35.
    Nishi, T., Shibata, H., Waseda, Y., Ohta, H.: Thermal conductivities of molten iron, cobalt, and nickel by laser flash method. Metall Mater Trans A 34, 2801–2807 (2003)CrossRefGoogle Scholar
  36. 36.
    Almanza, O., Rodríguez-Pérez, M.A., de Saja, J.A.: The measurement of the thermal diffusivity and heat capacity of polyethylene foams using the transient plane source technique. Polym Int 53, 2038–2044 (2004)CrossRefGoogle Scholar
  37. 37.
    Solórzano, E., Rodríguez-Pérez, M.A., Reglero, J.A., de Saja, J.A.: Density gradients in alumium foams: characterisation by computed tomography and measurements of the effective thermal conductivity. J Mater Sci 42, 2557–2564 (2007)CrossRefGoogle Scholar
  38. 38.
    Solórzano, E., Rodríguez-Pérez, M.A., de Saja, J.A.: Thermal conductivity of cellular metals measured by the transient plane source method. Adv Eng Mater 10, 596–602 (2008)CrossRefGoogle Scholar
  39. 39.
    Solórzano, E., Reglero, J.A., Rodríguez-Pérez, M.A., Lehmhus, D., Wichmann, M., de Saja, J.A.: An experimental study on the thermal conductivity of aluminium Foams by using the transient plane source method. Int J Heat Mass Transf 51, 6259–6267 (2008)CrossRefGoogle Scholar
  40. 40.
    Solórzano, E., Hirschmann, M., Rodríguez-Pérez, M.A., Körner, C., de Saja, J.A.: Thermal conductivity of AZ91 magnesium integral foams measured by the transient plane source method. Mater Lett 62, 3960–3962 (2008)CrossRefGoogle Scholar
  41. 41.
    Gustavsson, M., Karawacki, E., Gustafsson, S.E.: Thermal conductivity, thermal diffusivity and specific heat of thin samples from transient measurement with hot disk sensors. Rev Sci Instrum 65, 3856–3859 (1994)CrossRefGoogle Scholar
  42. 42.
    Almanza, O., Rodríguez-Pérez, M.A., de Saja, J.A.: Applicability of the transient plane source method to measure the thermal conductivity of low density polyethylene foams. J Polym Sci B Polym Phys 42, 1226–1234 (2004)CrossRefGoogle Scholar
  43. 43.
    Coquard, R., Baillis, D.: Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater 57, 5466–5479 (2009)CrossRefGoogle Scholar
  44. 44.
    Schuetz, M.A., Glicksman, L.R.: Heat Transfer in Foam Insulation. Massachusetts Institute of Technology, Cambridge, MA (1982)Google Scholar
  45. 45.
    Ahern, A., Verbist, G., Weaire, D., Phelan, R., Fleurent, H.: The conductivity of foams: a generalisation of the electrical to the thermal case. Colloids Surf A Phys Eng Asp 263, 275–279 (2005)CrossRefGoogle Scholar
  46. 46.
    Kaviany, M.: Principles of Heat Transfer in Porous Media (Mechanical Engineering Series), 2nd edn. Springer, Berlin (1999)Google Scholar
  47. 47.
    Williams, R.J.J., Aldao, C.M.: Thermal conductivity of plastic foams. Polym Eng Sci 6, 293–298 (1983)CrossRefGoogle Scholar
  48. 48.
    Almanza, O., Rodríguez-Pérez, M.A., de Saja, J.A.: Prediction of the radiation term in the thermal conductivity of crosslinked closed cell polyolefin foams. J Polym Sci B Polym Phys 38, 993–1004 (2000)CrossRefGoogle Scholar
  49. 49.
    Rodríguez-Pérez, M.A., González-Peña, J.I., Witten, N., de Saja, J.A.: The effect of cell size on the physical properties of crosslinked closed cell polyethylene foams produced by a high pressure nitrogen solution process. Cell Polym 21, 165–194 (2002)Google Scholar
  50. 50.
    Kuhn, J., Ebert, H.P., Arduini-Schuster, M.C., Büttner, D., Fricke, J.: Thermal transport in polystyrene and polyurethane foam insulations. Int J Heat Mass Transf 35, 1795–1801 (1992)CrossRefGoogle Scholar
  51. 51.
    Russel, R.H.: Principles of heat flow in porous insulators. J Am Ceram Soc 18, 1–5 (1935)CrossRefGoogle Scholar
  52. 52.
    Bedeaux, D., Kapral, R.: The effective reaction rate and diffusion coefficients for a two-phase medium. J Chem Phys 79, 1783–1788 (1983)CrossRefGoogle Scholar
  53. 53.
    Boetes, R., Hoogendoorn, C.J.: Heat transfer in polyurethane foams for cold insulation. Proc. Int. Symp. Heat Mass Transf 24, 14–31 (1987)Google Scholar
  54. 54.
    Loeb, A.L.: Thermal conductivity: VIII, A theory of thermal conductivity of porous materials. J Am Ceram Soc 37, 96–99 (1954)CrossRefGoogle Scholar
  55. 55.
    Francl, J., Kingery, W.D.: Thermal conductivity: IX. Experimental investigation of effect of porosity on thermal conductivity. J Am Ceram Soc 37, 99–107 (1954)CrossRefGoogle Scholar
  56. 56.
    Batty, W.J., Probert, S.D., O’Callaghan, P.W.: Apparent thermal conductivities of high-porosity cellulary insulants. Appl Energy 18, 117–135 (1984)CrossRefGoogle Scholar
  57. 57.
    Sims, G.L.A., Khunniteekool, C.: Cell size measurement of polymeric foams. Cell Polym 13, 137–146 (1994)Google Scholar
  58. 58.
    Almanza, O., Rodríguez-Pérez, M.A., de Saja, J.A.: The thermal conductivity of polyethylene foams manufactured by a nitrogen solution process. Cell Polym 18, 385–401 (1999)Google Scholar
  59. 59.
    Román-Lorza, S., Rodríguez-Pérez, M.A., de Saja, J.A., Zurro, J.: Cellular structure of EVA/ATH halogen-free flame-retardant foams. J Cell Plast 46, 259–279 (2010)CrossRefGoogle Scholar
  60. 60.
    Zhang, G., Xia, Y., Wang, H., Tao, Y., Tao, G., Tu, S., Wu, H.: A percolation model of thermal conductivity for filled polymer composites. J Compos Mater 44, 963–970 (2010)CrossRefGoogle Scholar
  61. 61.
    Berber, S., Kwon, Y.K., Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84, 4613–4616 (2000)CrossRefGoogle Scholar
  62. 62.
    Che, J., Cagin, T., Goddard, W.A.: Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65–69 (2000)CrossRefGoogle Scholar
  63. 63.
    Osman, M., Srivastava, D.: Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12, 21 (2001)CrossRefGoogle Scholar
  64. 64.
    Yi, W., Lu, L., Dian-lin, Z., Pan, Z.W., Xie, S.S.: Linear specific heat of carbon nanotubes. Phys Rev B 59, R9015–R9018 (1999)CrossRefGoogle Scholar
  65. 65.
    Shaffer, M.S.P., Sandler, J.K.W.: Carbon nanotube/nanofibre polymer composites. In: Advani, S.G. (ed.) Processing and Properties of Nanocomposites. World Scientific, Singapore (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcelo Antunes
    • 1
    Email author
  • José Ignacio Velasco
    • 1
  • Eusebio Solórzano
    • 2
  • Miguel Ángel Rodríguez‐Pérez
    • 2
  1. 1.Centre Català del Plàstic, Departament de Ciència dels Materials i Enginyeria Metal·lúrgicaUniversitat Politècnica de CatalunyaTerrassaSpain
  2. 2.Cellular Materials Laboratory (CellMat), Condensed Matter Physics DepartmentUniversity of ValladolidValladolidSpain

Personalised recommendations