Advertisement

Continuum Modeling of Diffusive Transport in Inhomogeneous Solids

  • Helmut J. BöhmEmail author
  • Heinz E. Pettermann
  • Sergio Nogales
Chapter
  • 2k Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 2)

Abstract

General features of homogenization and localization in studying the conduction behavior of inhomogeneous materials are introduced and two groups of methods for solving such problems are presented. First, mean field and bounding approaches are discussed and comparisons between the predictions of relevant methods are given. Next, modeling approaches to studying discrete microstructures are covered, the main emphasis being put on periodic homogenization and windowing procedures. Finally, an application of the methods to diamond particle reinforced aluminum is presented, in which interfacial effects play an important role.

Keywords

Anchor Node Master Node Effective Conductivity Inhomogeneous Material Interfacial Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Auriault, J.: Effective macroscopic description for heat conduction in periodic composites. Int J Heat Mass Transf 26, 861–869 (1983)CrossRefGoogle Scholar
  2. 2.
    Auriault, J.: Upscaling heterogeneous media by asymptotic expansions. J Eng Mech ASCE 128, 817–822 (2002)CrossRefGoogle Scholar
  3. 3.
    Beasley, J., Torquato, S.: Bounds on the conductivity of a suspension of random impenetrable spheres. J Appl Phys 60, 3576–3581 (1986)CrossRefGoogle Scholar
  4. 4.
    Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6, 147–157 (1987)CrossRefGoogle Scholar
  5. 5.
    Böhm, H.: A Short Introduction to Basic Aspects of Continuum Micromechanics. Tech. Rep. (ILSB Arbeitsbericht 206), TU Wien, Vienna, Austria (2009). http://www.ilsb.tuwien.ac.at/links/downloads/ilsbrep206.pdf
  6. 6.
    Böhm, H., Nogales, S.: Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos Sci Technol 68, 1181–1187 (2008)CrossRefGoogle Scholar
  7. 7.
    Böhm, H., Pahr, D., Daxner, T.: Analytical and numerical methods for modeling the thermomechanical and thermophysical behavior of microstructured materials. In: Silberschmidt, V. (ed.) Computational and Experimental Mechanics of Advanced Materials. CISM Courses and Lectures, vol. 514, pp. 167–223. Springer, Vienna, Austria (2009)CrossRefGoogle Scholar
  8. 8.
    Bruggemann, D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 24, 636–679 (1935)CrossRefGoogle Scholar
  9. 9.
    Buryachenko, V.: Micromechanics of Heterogeneous Materials. Springer, New York, NY (2007)CrossRefGoogle Scholar
  10. 10.
    Duan, H., Karihaloo, B., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys Rev B, 174203 (2006)Google Scholar
  11. 11.
    Duschlbauer, D.: Computational Simulation of the Thermal Conductivity of MMCs under Consideration of the Inclusion–Matrix Interface. Reihe 5, Nr.561, VDI-Verlag, Düsseldorf, Germany (2004)Google Scholar
  12. 12.
    Duschlbauer, D., Pettermann, H., Böhm, H.: Heat conduction of a spheroidal inhomogeneity with imperfectly bonded interface. J Appl Phys 94, 1539–1549 (2003)CrossRefGoogle Scholar
  13. 13.
    Duschlbauer, D., Pettermann, H., Böhm, H.: Numerical simulation of the thermal conductivity of MMCs – the effect of thermal interface resistance. Mater Sci Technol 19, 1107–1114 (2003)CrossRefGoogle Scholar
  14. 14.
    Duschlbauer, D., Böhm, H., Pettermann, H.: Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches. J Compos Mater 40, 2217–2234 (2006)CrossRefGoogle Scholar
  15. 15.
    Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A Math Phys Sci 241, 376–396 (1957)CrossRefGoogle Scholar
  16. 16.
    Ferrari, M.: Asymmetry and the high concentration limit of the Mori–Tanaka effective medium theory. Mech Mater 11, 251–256 (1991)CrossRefGoogle Scholar
  17. 17.
    Fiedler, T, Belova, IV., øchsner, A, Murch, GE.: Lattice Monte Carlo analysis of thermal diffusion in multi-phase materials. Springer, Heidelberg (2011). doi: 10.1007/8611_2010_6
  18. 18.
    Flaquer, J., Ríos, A., Martín-Meizoso, A., Nogales, S., Böhm, H.: Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comput Mater Sci 41, 156–163 (2007)CrossRefGoogle Scholar
  19. 19.
    Furmański, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl Mech Rev 50, 327–356 (1997)CrossRefGoogle Scholar
  20. 20.
    Giraud, A., Gruescu, C., Do, D., Homand, F., Kondo, D.: Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44, 2627–2647 (2007)CrossRefGoogle Scholar
  21. 21.
    Harte, A., McNamara, J.: Use of micromechanical modelling in the material characterisation of overinjected thermoplastic composites. J Mater Process Technol 173, 376–383 (2006)CrossRefGoogle Scholar
  22. 22.
    Hashin, Z.: Analysis of composite materials – a survey. J Appl Mech Trans ASME 50, 481–505 (1983)CrossRefGoogle Scholar
  23. 23.
    Hashin, Z.: The differential scheme and its application to cracked materials. J Mech Phys Solids 36, 719–733 (1988)CrossRefGoogle Scholar
  24. 24.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33, 3125–3131 (1962)CrossRefGoogle Scholar
  25. 25.
    Hasselman, D., Donaldson, K.: Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J Am Ceram Soc 75, 3137–3140 (1992)CrossRefGoogle Scholar
  26. 26.
    Hasselman, D., Johnson, L.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21, 508–515 (1987)CrossRefGoogle Scholar
  27. 27.
    Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58, 2478–2486 (1985)CrossRefGoogle Scholar
  28. 28.
    Hazanov, S.: Hill condition and overall properties of composites. Arch Appl Mech 68, 385–394 (1998)CrossRefGoogle Scholar
  29. 29.
    Hill, R.: A self-consistent mechanics of composite materials. J Mech Phys Solids 13, 213–222 (1965)CrossRefGoogle Scholar
  30. 30.
    Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15, 79–95 (1967)CrossRefGoogle Scholar
  31. 31.
    Jiang, M., Ostoja-Starzewski, M., Jasiuk, I.: Scale-dependent bounds on effective elastoplastic response of random composites. J Mech Phys Solids 49, 655–673 (2001)CrossRefGoogle Scholar
  32. 32.
    Kenesei, P., Borbély, A., Biermann, H.: Microstructure based three-dimensional finite element modeling of particulate reinforced metal matrix composites. Mater Sci Eng A Struct 387, 852–856 (2004)CrossRefGoogle Scholar
  33. 33.
    Kerner, E.: The electrical conductivity of composite media. Proc Phys Soc B 69, 802–807 (1956)CrossRefGoogle Scholar
  34. 34.
    Lipton, R., Talbot, D.: Bounds for the effective conductivity of a composite with an imperfect interface. Proc R Soc Lond A Math Phys Sci 457, 1501–1517 (2001)CrossRefGoogle Scholar
  35. 35.
    Markov, K.: Elementary micromechanics of heterogeneous media. In: Markov, K., Preziosi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhäuser, Boston, MA (2000)Google Scholar
  36. 36.
    Matt, C., Cruz, M.: Application of a multiscale finite-element approach to calculate the effective thermal conductivity of particulate media. Comput Appl Math 21, 429–460 (2002)Google Scholar
  37. 37.
    Matt, C., Cruz, M.: Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance. Numer Heat Transf A 53, 577–604 (2008)CrossRefGoogle Scholar
  38. 38.
    Matt, CF, Cruz, ME.: Heat conduction in two-phase composite materials with three-dimensional microstructures and interfacial thermal resistance. Springer, Heidelberg (2011). doi: 10.1007/8611_2010_10
  39. 39.
    Maxwell, J.: Treatise on Electricity and Magnetism. Clarendon, Oxford (1873)Google Scholar
  40. 40.
    Michel, J., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172, 109–143 (1999)CrossRefGoogle Scholar
  41. 41.
    Miller, C., Torquato, S.: Effective conductivity of hard sphere suspensions. J Appl Phys 68, 5486–5493 (1990)CrossRefGoogle Scholar
  42. 42.
    Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  43. 43.
    Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21, 571–574 (1973)CrossRefGoogle Scholar
  44. 44.
    Nogales, S.: Numerical Simulation of the Thermal and Thermomechanical Behavior of Metal Matrix Composites. Reihe 18, Nr.317, VDI–Verlag, Düsseldorf, Germany (2008)Google Scholar
  45. 45.
    Nogales, S., Böhm, H.: Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. Int J Eng Sci 46, 606–619 (2008)CrossRefGoogle Scholar
  46. 46.
    Nye, J.: Physical Properties of Crystals, Their Representation by Tensors and Matrices. Clarendon, Oxford (1957)Google Scholar
  47. 47.
    Ostoja-Starzewski, M.: Random field models of heterogeneous materials. Int J Solids Struct 35, 2429–2455 (1998)CrossRefGoogle Scholar
  48. 48.
    Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys Rev B 54, 278–285 (1996)CrossRefGoogle Scholar
  49. 49.
    Persson, L.: Computing effective thermal conductivities of composite materials by the homogenization method. PhD thesis, Luleå Tekniska Universitet, Luleå, Sweden (1986)Google Scholar
  50. 50.
    Phan-Tien, N., Pham, D.: Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity. Int J Eng Sci 38, 73–88 (2000)CrossRefGoogle Scholar
  51. 51.
    Ponte Castañeda, P., Willis, J.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43, 1919–1951 (1995)CrossRefGoogle Scholar
  52. 52.
    Progelhof, R., Throne, R., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16, 615–625 (1976)CrossRefGoogle Scholar
  53. 53.
    Rintoul, M., Torquato, S.: Reconstruction of the structure of dispersions. J Colloid Interface Sci 186, 467–476 (1997)CrossRefGoogle Scholar
  54. 54.
    Ruch, P., Beffort, O., Kleiner, S., Weber, L., Uggowitzer, P.: Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66, 2677–2685 (2006)CrossRefGoogle Scholar
  55. 55.
    Segurado, J.: Micromecánica computacional de materiales compuestos reforzados con partículas. PhD thesis, Universidad Politécnica de Madrid, Spain (2004)Google Scholar
  56. 56.
    Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling. Comput Method Appl Mech Eng 155, 181–192 (1998)CrossRefGoogle Scholar
  57. 57.
    Terada, K., Kikuchi, N.: Microstructural design of composites using the homogenization method and digital images. Mater Sci Res Int 2, 65–72 (1996)Google Scholar
  58. 58.
    Torquato, S.: Effective electrical conductivity of two-phase disordered composite media. J Appl Phys 58, 3790–3797 (1985)CrossRefGoogle Scholar
  59. 59.
    Torquato, S.: Random Heterogeneous Media. Springer, New York, NY (2002)Google Scholar
  60. 60.
    Torquato, S., Rintoul, D.: Effect of the interface on the properties of composite media. Phys Rev Lett 75, 4067–4070 (1995)CrossRefGoogle Scholar
  61. 61.
    Weng, G.: The theoretical connection between Mori–Tanaka theory and the Hashin–Shtrikman–Walpole bounds. Int J Eng Sci 28, 1111–1120 (1990)CrossRefGoogle Scholar
  62. 62.
    Wiener, O.: Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abh Math-Phys Kl Königl Sächs Ges Wiss 32, 509–604 (1912)Google Scholar
  63. 63.
    Willis, J.: Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J Mech Phys Solids 25, 185–202 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Helmut J. Böhm
    • 1
    Email author
  • Heinz E. Pettermann
    • 1
  • Sergio Nogales
    • 1
  1. 1.Institute of Lightweight Design and Structural BiomechanicsVienna University of TechnologyViennaAustria

Personalised recommendations