Advertisement

Radiative Transfer in Two-Phase Dispersed Materials

  • Jaona RandrianalisoaEmail author
  • Rémi Coquard
  • Dominique Baillis
Chapter
  • 2k Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 2)

Abstract

This chapter presents the treatment of radiative transfer in two-phase dispersed media in the framework of radiative transfer theory. With this aim, two modeling approaches, under the geometric optic hypothesis, are described and then compared. The first one is the traditional treatment of dispersed media as continuous and homogeneous systems, referred to here as the Homogeneous Phase Approach (HPA). The radiation propagation is characterized by effective radiative properties and modeled by the conventional Radiative Transfer Equation (RTE). The second approach is based on a separate treatment of radiative transfer in the continuous and dispersed phases, referred as the Multi-Phase Approach (MPA). In this approach, each constituting phase has its own effective radiative properties and temperatures. For each approach, the methods for predicting the radiative properties are reviewed. The radiative transfers through typical two-phase dispersed media, such as glass containing bubbles, packed bed of opaque spheres, and packed-bed of semitransparent spheres, are analyzed. The results of transmittances and reflectances from these predictive approaches are compared with available experimental data or Monte Carlo (MC) simulation.

Through this contribution, it is shown that the HPA is satisfactory for analyzing radiative transfer in two-phase dispersed media provided that the effective radiative properties are correctly predicted. For practical purpose, it is recommended to use first the well-known independent scattering theory when dispersed contents (or scatterers) are largely spaced or when their volume fraction is small. An example of these media is the glass containing bubbles studied herein. Then, the correlated scattering theory proposed by Brewster or Singh and Kaviany is the simplest model when the continuous phase is non-absorbing and the dispersed phase is constituted of opaque spheres. Finally, the ray-tracing (RT) based method can be used for arbitrary dispersed materials fulfilling the geometric optic regime.

Concerning the MPA, it is generally a suitable approach, as exemplified with glass containing bubbles and packed bed of opaque particles. It is however inaccurate for a few cases for which the scattering pattern presents strong peaks (known as rainbow peaks) due to the correlation between the rays incident on a scatterer and those transmitted through it after undergoing several internal reflections. This problem may occur only when (1) the continuum is less refracting than the scatterers; (2) the scatterers are weakly absorbing; and (3) the scatterer boundaries are specular and regular in shape. It is, for example, the case with a packed-bed of semitransparent specularly reflecting spheres.

Keywords

Radiative Transfer Radiative Property Direct Monte Carlo Simulation Radiative Transfer Equation Fuse Quartz 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mujeebu, M.A., Abdullah, M.Z., Bakar, M.Z.A., Mohamad, A.A., Abdullah, M.K.: Applications of porous media combustion technology – a review. Appl. Energy 86, 1365–1375 (2009)CrossRefGoogle Scholar
  2. 2.
    Sathe, S.B., Peck, R.E., Tong, T.W.: A numerical analysis of heat transfer and combustion in porous radiant burners. Int. J. Heat Mass Transf. 33, 1331–1338 (1990)CrossRefGoogle Scholar
  3. 3.
    Damm, D.L., Fedorov, A.G.: Radiation heat transfer in SOFC materials and components. J. Power Sources 143, 158–165 (2005)CrossRefGoogle Scholar
  4. 4.
    Steinfeld, A.: Solar thermochemical production of hydrogen – a review. Sol. Energy 78, 603–615 (2005)CrossRefGoogle Scholar
  5. 5.
    Glicksmann, L.R., Arduini-Schuetz, M.C., Sinofsky, M.: Radiation heat transfer in foam Insulation. Int. J. Heat Mass Transf. 109, 809–812 (1987)Google Scholar
  6. 6.
    Kuhn, J., Ebert, H.P., Arduini-Schuster, M.C., Buttner, D., Fricke, J.: Thermal transport in polystyrene and polyurethanes foam insulations. Int. J. Heat Mass Transf. 35, 1795–1801 (1992)CrossRefGoogle Scholar
  7. 7.
    Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)Google Scholar
  8. 8.
    Quintard, M., Whitaker, S.: Fundamentals of transport equation formulation for two-phase flow in homogeneous and heterogeneous porous media. In: Parlange, M.B., Hopmans, J.W. (eds.) Vadose Zone Hydrology: Cutting Across Disciplines, pp. 3–57. Oxford University Press, New York (1999). Chapter 1Google Scholar
  9. 9.
    Howell, J.R.: Radiative transfer in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 663–698. Marcel Dekker, New York (2000). Chapter 15CrossRefGoogle Scholar
  10. 10.
    Kaviany, M., Singh, B.P.: Radiative heat transfer in porous media. In: Hartnett, J.P., Irvine, T. (eds.) Advances in Heat Transfer, vol 23, pp. 133–186. Academic, San Diego (1993)CrossRefGoogle Scholar
  11. 11.
    Adzerikho, K.S., Nogotov, E.F., Trofimov, V.P.: Radiation Heat Transfer in Two-Phase Media, 1st edn. CRC, Boca Raton (1993)Google Scholar
  12. 12.
    Foldy, L.L.: The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67, 107–119 (1945)CrossRefGoogle Scholar
  13. 13.
    Goldberg, M.L., Watson, K.M.: Collision Theory. Wiley, New York (1964)Google Scholar
  14. 14.
    Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic, New York (1978)Google Scholar
  15. 15.
    Apresyan, L.A., Kravtsov, Y.A.: Radiative Transfer Theory. Nauka, Moscow (1983)Google Scholar
  16. 16.
    Papanicolaou, G.C., Burridge, R.: Transport equations for the Stokes parameters from Maxwell equations in a random media. J. Math. Phys. 16, 2074–2082 (1975)CrossRefGoogle Scholar
  17. 17.
    Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006)Google Scholar
  18. 18.
    Chandrasekhar, S.: Radiative Transfer. Oxford University Press, Oxford (1950)Google Scholar
  19. 19.
    Lenoble, J.: Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Deepak, Hampton (1985)Google Scholar
  20. 20.
    Brewster, M.Q.: Thermal Radiative Transfer and Properties. Wiley, New York (1992)Google Scholar
  21. 21.
    Modest, M.F.: Radiative Heat Transfer. Academic, New York (2003)Google Scholar
  22. 22.
    Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. Taylor & Francis, New York (2002)Google Scholar
  23. 23.
    Mishchenko, M.I.: Far-field approximation in electromagnetic scattering. J. Quant. Spectrosc. Radiat. Transf. 100, 268–276 (2006)CrossRefGoogle Scholar
  24. 24.
    Kerker, M.: The Scattering of Light and Other Electromagnetic Radiation. Academic, New York (1966)Google Scholar
  25. 25.
    Van de Hulst, H.C.: Light Scattering by Small Particles. Dover, New York (1981)Google Scholar
  26. 26.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)Google Scholar
  27. 27.
    Durant, S., Calvo-Perez, O., Vukadinovic, N., Greffet, J.J.: Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient. J. Opt. Soc. Am. A 24, 2953–2962 (2007)CrossRefGoogle Scholar
  28. 28.
    Waterman, P.C., Truell, R.: Multiple scattering of waves. J. Math. Phys. 2, 512–537 (1961)CrossRefGoogle Scholar
  29. 29.
    Twersky, V.: On scattering of waves by random distributions. I. Free-space scatterer formalism. J. Math. Phys. 3, 700–715 (1962)CrossRefGoogle Scholar
  30. 30.
    Lax, M.: Multiple scattering of waves. II. The effective field in dense systems. Phys. Rev. 85, 621–629 (1952)CrossRefGoogle Scholar
  31. 31.
    Cartigny, J.D., Yamada, Y., Tien, C.L.: Radiative transfer with dependent scattering by particles: Part I – Theoretical investigation. J. Heat Transf. 108, 608–613 (1986)CrossRefGoogle Scholar
  32. 32.
    Yamada, Y., Cartigny, J.D., Tien, C.L.: Radiative transfer with dependent scattering by particles: Part II – Experimental investigation. J. Heat Transf. 108, 614–618 (1986)CrossRefGoogle Scholar
  33. 33.
    Drolen, B.L., Tien, C.L.: Independent and dependent scattering in packed-sphere systems. J. Thermophys. Heat Transf. 1, 63–68 (1987)CrossRefGoogle Scholar
  34. 34.
    Kumar, S., Tien, C.L.: Dependent absorption and extinction of radiation by small particles. J. Heat Transf. 112, 178–185 (1990)CrossRefGoogle Scholar
  35. 35.
    Kamiuto, K.: Correlated radiative transfer in packed-sphere systems. J. Quant. Spectrosc. Radiat. Transf. 43, 39–43 (1990)CrossRefGoogle Scholar
  36. 36.
    Singh, B.P., Kaviany, M.: Modelling radiative heat transfer in packed beds. Int. J. Heat Mass Transf. 35, 1397–1405 (1992)CrossRefGoogle Scholar
  37. 37.
    Dombrovsky, L.: Thermal radiation from nonisothermal spherical particles of a semitransparent material. Int. J. Heat Mass Transf. 43, 1661–1672 (2000)CrossRefGoogle Scholar
  38. 38.
    Dombrovsky, L.: Large-cell model of radiation heat transfer in multiphase flows typical for fuel–coolant interaction. Int. J. Heat Mass Transf. 50, 3401–3410 (2007)CrossRefGoogle Scholar
  39. 39.
    Zeghondy, B., Estelle, Y., Taine, J.: Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI). Int. J. Heat Mass Transf. 49, 2810–2819 (2006)CrossRefGoogle Scholar
  40. 40.
    Gusarov, A.V.: Homogenization of radiation transfer in two-phase media with irregular phase boundaries. Phys. Rev. B 77, 144201 (2008)CrossRefGoogle Scholar
  41. 41.
    Randrianalisoa, J., Baillis, D.: Radiative transfer in dispersed media: comparison between homogeneous phase and multiphase approaches. J. Heat Transf. 132, 023405 (2010)CrossRefGoogle Scholar
  42. 42.
    Brewster, M.Q.: Volume scattering of radiation in packed beds of large, opaque spheres. J. Heat Transf. 126, 1048–1050 (2004)CrossRefGoogle Scholar
  43. 43.
    Coquard, R., Baillis, D.: Radiative properties of dense fibrous medium containing fibers in the geometric limit. J. Heat Transf. 128, 1022–1030 (2006)CrossRefGoogle Scholar
  44. 44.
    Coquard, C., Baillis, D.: Radiative characteristics of opaque spherical particle beds: a new method of prediction. J. Thermophys. Heat Transf. 18, 178–186 (2004)CrossRefGoogle Scholar
  45. 45.
    Tancrez, M., Taine, J.: Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique. Int. J. Heat Mass Transf. 47, 373–383 (2004)CrossRefGoogle Scholar
  46. 46.
    Randrianalisoa, J., Baillis, D.: Radiative properties of densely packed spheres in semitransparent media: a new geometric optics approach. J. Quant. Spectrosc. Rad. Transf. 111, 1372–1388Google Scholar
  47. 47.
    Jones, P.D., McLeod, D.G., Dorai-Raj, D.E.: Correlation of measured and computed radiation intensity exiting a packed bed. J. Heat Transf. 118, 94–102 (1996)CrossRefGoogle Scholar
  48. 48.
    Randrianalisoa, J., Baillis, D., Pilon, L.: Improved inverse method for radiative characteristics of closed-cell absorbing porous media. J. Thermophys. Heat Transf. 20, 871–883 (2006)CrossRefGoogle Scholar
  49. 49.
    Dombrovsky, L.: The propagation of infrared radiation in a semitransparent liquid containing gas bubbles. High Temp. 42, 133–139 (2004)Google Scholar
  50. 50.
    Mischler, D., Steinfeld, A.: Nonisothermal nongray absorbing–emitting–scattering suspension of Fe3O4 particles under concentrated solar irradiation. J. Heat Transf. 117, 346–354 (1995)CrossRefGoogle Scholar
  51. 51.
    Qiu, T.Q., Longtin, J.P., Tien, C.L.: Characteristics of radiation absorption in metallic particles. J. Heat Transf. 117, 340–345 (1995)CrossRefGoogle Scholar
  52. 52.
    Dembele, S., Delmas, A., Sacadura, J.F.: A method for modeling the mitigation of hazardous fire thermal radiation by water spray curtains. J. Heat Transf. 119, 746–753 (1997)CrossRefGoogle Scholar
  53. 53.
    Fedorov, A.G., Viskanta, R.: Radiation characteristics of glass foams. J. Am. Ceram. Soc. 83, 2769–2776 (2000)CrossRefGoogle Scholar
  54. 54.
    Hottel, H.C., Sarofim, A.F., Dalzell, W.H., Vasalos, I.A.: Optical properties of coatings, effect of pigment concentration. J. Thermophys. Heat Transf. 9, 1895–1898 (1971)Google Scholar
  55. 55.
    Ishimaru, Kuga, Y.: Attenuation constant of a coherent field in a dense distribution of particles. J. Optic. Soc. Am. 72, 1317–1320 (1982)CrossRefGoogle Scholar
  56. 56.
    Brewster, M.Q., Tien, C.L.: Radiative transfer in packed fluidized beds: dependent versus independent scattering. J. Heat Transf. 104, 573–579 (1982)CrossRefGoogle Scholar
  57. 57.
    Ivezic, Z., Menguc, P.: An investigation of dependent/independent scattering regimes using a discrete dipole approximation. Int. J. Heat Mass Transf. 39, 811–822 (1996)CrossRefGoogle Scholar
  58. 58.
    Kaviany, M., Singh, B.P.: Radiative heat transfer in packed beds. In: Quintard, M., Todorovic, M. (eds.) Heat and Mass Transfer in Porous Media, pp. 191–202. Elsevier, Amsterdam (1992)Google Scholar
  59. 59.
    Zeghondy, B., Iacona, E., Taine, J.: Experimental and RDFI calculated radiative properties of a mullite foam. Int. J. Heat Mass Transf. 49, 3702–3707 (2006)CrossRefGoogle Scholar
  60. 60.
    Petrasch, J., Wyss, P., Steinfeld, A.: Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectrosc. Radiat. Transf. 105, 180–197 (2007)CrossRefGoogle Scholar
  61. 61.
    Baillis, D., Sacadura, J.F.: Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. J. Quant. Spectrosc. Radiat. Transf. 67, 327–363 (2000)CrossRefGoogle Scholar
  62. 62.
    Dombrovsky, L., Randrianalisoa, J., Baillis, D., Pilon, L.: Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles. Appl. Opt. 44, 7021–7031 (2005)CrossRefGoogle Scholar
  63. 63.
    Baillis, D., Sacadura, J.F.: Directional spectral emittance of a packed bed: influence of the temperature gradient in the medium. J. Heat Transf. 124, 904–911 (2002)CrossRefGoogle Scholar
  64. 64.
    Fedorov, A.G., Viskanta, R.: Radiative transfer in a semitransparent glass foam blanket. Phys. Chem. Glasses 41, 127–135 (2000)Google Scholar
  65. 65.
    Fedorov, A.G., Pilon, L.: Glass foams: formation, transport properties, and heat, mass, and radiation transfer. J. Non-Cryst. Solids 311, 154–173 (2002)Google Scholar
  66. 66.
    Malitson, I.H.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965)CrossRefGoogle Scholar
  67. 67.
    Beder, E.C., Bass, C.D., Shackleford, W.L.: Transmissivity and absorption of fused quartz between 0.2 μm and 3.5 μm from room temperature to 1500 degree C. Appl. Opt. 10, 2263–2268 (1971)CrossRefGoogle Scholar
  68. 68.
    Touloukian, Y.S., DeWitt, D.P.: Thermal radiative properties: nonmetallic solids. In: Touloukian, Y.S., DeWitt, D.P. (eds.) Thermophysical Properties of Matter, vol 8. Plenum, New York (1972)Google Scholar
  69. 69.
    Khashan, M.A., Nassif, A.Y.: Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3 μm. Opt. Commun. 188, 129–139 (2001)CrossRefGoogle Scholar
  70. 70.
    Randrianalisoa, J., Baillis, D., Pilon, L.: Modeling radiation characteristics of semitransparent media containing bubbles or particles. J. Opt. Soc. Am. A 23, 1645–1656 (2006)CrossRefGoogle Scholar
  71. 71.
    Dombrovsky, L., Randrianalisoa, J., Baillis, D.: Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional–hemispherical measurements. J. Opt. Soc. Am. A 23, 91–98 (2006)CrossRefGoogle Scholar
  72. 72.
    Dombrovsky, L., Randrianalisoa, J., Baillis, D.: Infrared radiative properties of polymer coatings containing hollow microspheres. Int. J. Heat Mass Transf. 50, 1516–1527 (2007)CrossRefGoogle Scholar
  73. 73.
    Mundy, W.C., Roux, J.A., Smith, A.M.: Mie scattering by spheres in an absorbing medium. J. Opt. Soc. Am. 64, 1593–1597 (1974)CrossRefGoogle Scholar
  74. 74.
    Mills, A.F.: Heat Transfer, 2nd edn. Prentice Hall, New Jersey (1999)Google Scholar
  75. 75.
    Jäger, K., Lipiński, W., Katzgraber, H.G., Steinfeld, A.: Determination of thermal radiative properties of packed-bed media containing a mixture of polydispersed particles. Int. J. Therm. Sci. 150, 502–508 (2009)Google Scholar
  76. 76.
    Haussener, S., Lipiński, W., Petrasch, J., Wyss, P., Steinfeld, A.: Tomographic characterization of a semitransparent-particle packed bed and determination of its thermal radiative properties. J. Heat Transf. 131, 072701 (2009)CrossRefGoogle Scholar
  77. 77.
    Keller, J.B.: Stochastic equation and wave propagation in random media. Proc. Symp. Appl. Math. 13, 145–170 (1964)Google Scholar
  78. 78.
    Yang, Y.S., Howell, J.R., Klein, D.E.: Radiative heat transfer through a randomly packed bed of spheres by the Monte Carlo method. J. Heat Transf. 105, 325–332 (1983)CrossRefGoogle Scholar
  79. 79.
    Rousseau, B., De Sousa Meneses, D., Echegut, P., Di Michiel, M., Thovert, J.F.: Prediction of the thermal radiative properties of an X-ray µ-tomographied porous silica glass. Appl. Opt. 46, 4266–4276 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jaona Randrianalisoa
    • 1
    • 2
    Email author
  • Rémi Coquard
    • 3
  • Dominique Baillis
    • 1
    • 2
  1. 1.Université de Lyon, CNRS, INSA-Lyon, CETHIL, UMR5008VilleurbanneFrance
  2. 2.Université Lyon 1VilleurbanneFrance
  3. 3.Société « Etude Conseils Calcul en Mécanique des Structures » (ECMS)Villeurbanne CedexFrance

Personalised recommendations