Advertisement

Optimization of a Unit Periodic Cell in Lattice Block Materials Aimed at Thermo-Mechanical Applications

  • Pablo A. Muñoz-RojasEmail author
  • Thiago A. Carniel
  • Emilio C. N. Silva
  • Andreas Öchsner
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 2)

Abstract

Lattice block materials (LBMs) are periodic cellular materials, made of truss-like unit cells, which usually present a significant enhancement in mechanical performance when compared to their parent material. This improvement is generally measured by their low weight to strength ratio but several other desirable properties can also be considered, including high capacity for kinetic energy absorption, enhanced vibrational and damping characteristics, acoustic noise attenuation, shear strength, fracture strength, and directional heat conduction or insulation. Using optimization techniques, it is possible to tailor LBMs for specific multifunctional needs, combining good performance in different, and sometimes competing, properties. This work presents a particular approach for a systematic design of unit periodic cells of LBMs aiming at enhanced simultaneous stiffness and heat transfer homogenized properties. The homogenization is developed using an asymptotic expansion in two scales, the unit cells are modeled using linear pin-jointed truss finite elements and the optimization algorithm employed is Sequential Linear Programming (SLP). Nodal coordinates and cross sectional areas might be adopted as design variables simultaneously and the necessary sensitivities are obtained analytically. Illustrative 2D and 3D examples are included.

Keywords

Design Variable Topology Optimization Move Limit Sequential Linear Programming Constitutive Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Torquato, S., Hyun, S., Donev, A.: Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 89(26), 266601-1–266601-4 (2002)Google Scholar
  2. 2.
    Luxner, M.H., Woesz, A., Stampfl, J., Fratzl, P., Pettermann, H.E.: A finite element study on the effects of disorder in cellular structures. Acta Biomater. 5, 381–390 (2009)CrossRefGoogle Scholar
  3. 3.
    Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge (1997)Google Scholar
  4. 4.
    Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)CrossRefGoogle Scholar
  5. 5.
    Zhao, C.Y., Lu, W., Tassou, S.A.: Thermal analysis on metal-foam filled heat exchangers. Part II: tube heat exchangers. Int. J. Heat Mass Transf. 49(15–16), 2762–2770 (2006)CrossRefGoogle Scholar
  6. 6.
    Niu, B., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)CrossRefGoogle Scholar
  7. 7.
    Luxner, M.H., Stampfl, J., Pettermann, H.E.: Finite element modeling concepts and linear analyses of 3D regular open cell structures. J. Mater. Sci. 40, 5859–5866 (2005)CrossRefGoogle Scholar
  8. 8.
    McKown, S., Shen, Y., Brookes, W.K., Sutcliffe, C.J., Cantwell, W.J., Langdon, G.S., Nurick, G.N., Theobald, M.D.: The quasi-static and blast loading response of lattice structures. Int. J. Impact Eng. 35, 795–810 (2008)CrossRefGoogle Scholar
  9. 9.
    Ziegler, E., Accorsi, M., Bennet, M.: Continuum plate model for lattice block material. Mech. Mater. 36, 753–766 (2004)CrossRefGoogle Scholar
  10. 10.
    Liu, T., Deng, C., Lu, T.J.: Design optimization of truss-cored sandwiches with homogenization. Int. J. Solids Struct. 43, 7891–7918 (2006)CrossRefGoogle Scholar
  11. 11.
    Wallach, J.C., Gibson, L.J.: Mechanical behaviour of a three-dimensional truss material. Int. J. Solids Struct. 38, 7181–7196 (2001)CrossRefGoogle Scholar
  12. 12.
    Diaz, A.R., Haddow, A.G., Ma, L.: Design of band-gap grid structures. Struct. Multidiscip. Optim. 29, 418–431 (2005)CrossRefGoogle Scholar
  13. 13.
    Gonella, S., Albert, C.T., Liu, W.K.: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 57, 621–633 (2009)CrossRefGoogle Scholar
  14. 14.
    Martinsson, P.G., Movchan, A.B.: Vibrations of lattice structures and phononic band gaps. Q. J. Mech. Appl. Math. 56(1), 45–64 (2003)CrossRefGoogle Scholar
  15. 15.
    Brown, R.T., Zureick, A.: Lightweight composite truss section decking. Mar. Struct. 14, 115–132 (2001)CrossRefGoogle Scholar
  16. 16.
    Reynier, P., Reisch, U., Longo, J.M., Radespiel, R.: Flow predictions around a missile with lattice wings using the actuator disc concept. Aerosp. Sci. Technol. 8, 377–388 (2004)CrossRefGoogle Scholar
  17. 17.
    Luxner, M.H., Stampfl, J., Pettermann, H.E.: Numerical simulations of 3D open cell structures—influence of structural irregularities on elasto-plasticity and deformation localization. Int. J. Solids Struct. 44, 2990–3003 (2007)CrossRefGoogle Scholar
  18. 18.
    Yan, J., Cheng, G., Liu, L., Liu, S.: Concurrent material and structural optimization of hollow plate with truss-like material. Struct. Multidiscip. Optim. 35, 153–163 (2008)CrossRefGoogle Scholar
  19. 19.
    Fan, H.L., Fang, D.N., Jing, F.N.: Yield surfaces and micro-failure mechanism of block lattice truss materials. Mater. Des. 29, 2038–2042 (2008)CrossRefGoogle Scholar
  20. 20.
    Fan, H.L., Jin, F.N., Fang, D.N.: Nonlinear mechanical properties of lattice truss materials. Mater. Des. 30, 511–517 (2009)CrossRefGoogle Scholar
  21. 21.
    Lipperman, F., Fuchs, M.B., Ryvkin, M.: Stress localization and strength optimization of frame material with periodic microstructure. Comput. Methods Appl. Mech. Eng. 197, 4016–4026 (2008)CrossRefGoogle Scholar
  22. 22.
    Lim, J., Kang, K.: Mechanical behavior of sandwich panels with tetrahedral and Kagome truss cores fabricated from wires. Int. J. Solids Struct. 43, 5528–5246 (2006)Google Scholar
  23. 23.
    Bele E, Bouwhuis BA, Hibbard GD (2008) Work hardening as a strengthening mechanism in periodic cellular materials. Mat. Sci. Eng. A Struct. 489: 29–37CrossRefGoogle Scholar
  24. 24.
    Suralvo, M., Bouwhuis, B., McCrea, J.L., Palumbo, G., Hibbard, G.D.: Hybrid nanocrystalline periodic cellular materials. Scripta Mater. 58, 247–250 (2008)CrossRefGoogle Scholar
  25. 25.
    Kooistra, G.W., Wadley, H.N.G.: Lattice truss structures from expanded metal sheet. Mater. Des. 28, 507–514 (2007)CrossRefGoogle Scholar
  26. 26.
    Yan, J., Cheng, G., Liu, S., Liu, L.: Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. Int. J. Mech. Sci. 48, 400–413 (2006)CrossRefGoogle Scholar
  27. 27.
    Lipperman, F., Ryvkin, M., Fuchs, M.B.: Fracture toughness of two-dimensional cellular material with periodic microstructure. Int. J. Fract. 146, 279–290 (2007)CrossRefGoogle Scholar
  28. 28.
    Liu, L., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)CrossRefGoogle Scholar
  29. 29.
    Scheffler, M., Colombo, P.: Cellular ceramics: structure, manufacturing, properties and applications. Wiley–VCH, Weinheim (2005)Google Scholar
  30. 30.
    Luxner, M.H., Stampfl, J., Pettermann, H.E.: Linear and nonlinear investigations of regular open cell structures. In: Proceedings of IMECE’04, 2004 ASME International Mechanical Engineering Congress, Anaheim, California, USA (2004)Google Scholar
  31. 31.
    Lee, B., Kang, K.: A parametric study on compressive characteristics of wire-woven bulk Kagome truss cores. Compos. Struct. 92, 445–453 (2010)CrossRefGoogle Scholar
  32. 32.
    Hyun, S., Choi, J., Kang, K.: Effect of imperfections on the mechanical behavior of wire-woven bulk kagome truss PCMs under shear loading. J. Mech. Sci. Technol. 23, 1270–1277 (2009)CrossRefGoogle Scholar
  33. 33.
    Hyun, S., Choi, J., Kang, K.: Effects of imperfections on the mechanical behavior of a wire-woven bulk Kagome cellular metal under compression. Comp. Mater. Sci. 46, 73–82 (2009)CrossRefGoogle Scholar
  34. 34.
    Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Lecture Notes in Physics, vol. 127. Springer Verlag, Berlin (1980)Google Scholar
  35. 35.
    Hassani, B., Hinton, E.: Homogenization and structural topology optimization, Springer-Verlag, London (1999)Google Scholar
  36. 36.
    Hyun, S., Torquato, S.: Optimal and manufacturable two-dimensional, KagomÕ-like cellular solids. J. Mater. Res. 17(1), 137–144 (2002)CrossRefGoogle Scholar
  37. 37.
    Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31, 2313–2329 (1994)CrossRefGoogle Scholar
  38. 38.
    Sigmund, O.: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)CrossRefGoogle Scholar
  39. 39.
    Deshpande, V.S., Ashby, M.F., Fleck, N.A.: Foam topology bending versus stretching dominated architectures. Acta Mater. 49, 1035–1040 (2001)CrossRefGoogle Scholar
  40. 40.
    Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309–327 (2001)CrossRefGoogle Scholar
  41. 41.
    Prasad, J., Diaz, A.R.: Synthesis of bistable periodic structures using topology optimization and a genetic algorithm. J. Mech. Des. 128, 1298–1306 (2006)CrossRefGoogle Scholar
  42. 42.
    Ohsaki, M., Nishiwaki, S.: Shape design of pin-jointed multistable compliant mechanisms using snapthrough behavior. Struct. Multidiscip. Optim. 30, 327–334 (2005)CrossRefGoogle Scholar
  43. 43.
    Dede, E.M., Hulbert, G.M.: Computational analysis and design of lattice structures with integral compliant mechanisms. Finite Elem. Anal. Des. 44, 819–830 (2008)CrossRefGoogle Scholar
  44. 44.
    Dede, E.M., Hulbert, G.M.: Topology optimization of structures with integral compliant mechanisms for mid-frequency response. Struct. Multidiscip. Optim. 39, 29–45 (2009)CrossRefGoogle Scholar
  45. 45.
    Fonseca, J.S.O.: Design of microstructures of periodic composite materials. Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan, USA (1997)Google Scholar
  46. 46.
    Hassani, B., Hinton, E.: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput. Struct. 69, 707–717 (1998)CrossRefGoogle Scholar
  47. 47.
    Guedes, J.M., Kikuchi, N.: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Methods Appl. Mech. 83(2), 143–198 (1990)CrossRefGoogle Scholar
  48. 48.
    Muþoz-Rojas, P.A., Silva, E.C.N., Cardoso, E.L., Vaz, M., Jr.: On the application of optimization techniques to heat transfer in cellular materials. In: øchsner, A., Murch, G.E., Lemos, M.J.S. (eds.) Cellular and porous materials: thermal properties simulation and prediction. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)Google Scholar
  49. 49.
    Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and applications of finite element analysis. Wiley, New York (2002)Google Scholar
  50. 50.
    Yang, Q., Becker, W.: Numerical investigation for stress, strain and energy homogenization of orthotropic composite with periodic microstructure and non-symmetric inclusions. Comput. Mater. Sci. 31, 169–180 (2004)CrossRefGoogle Scholar
  51. 51.
    Bendsoe, M.P., Sigmund, O.: Topology optimization: theory, methods, and applications, 2nd edn. Springer-Verlag, Berlin, Germany (2004)Google Scholar
  52. 52.
    Beckers, M.: Optimisation de structures en variables discrÒtes. Ph.D. Thesis, Universite de Liege, Belgium (1997)Google Scholar
  53. 53.
    Hansen, S., Vanderplaats, G.N.: Approximation method for configuration optimization of trusses. AIAA J. 28, 161–168 (1990)CrossRefGoogle Scholar
  54. 54.
    Pedersen, P.: Optimal joint positions for space trusses. J. Struct. Div. ST12 (1973)Google Scholar
  55. 55.
    Vanderplaats, G.N.: Numerical optimization techniques for engineering design. McGraw-Hill, New York (1984)Google Scholar
  56. 56.
    Carniel, T.A.,.Muñoz-Rojas, P.A.: An´lise e otimização de células periódicas de “Lattice Block Materials” visando aplicações termo-mecânicas. Internal Report (in Portuguese). Computational Mechanics Laboratory, Department of Mechanical Engineering, State University of Santa Catarina, Brazil (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pablo A. Muñoz-Rojas
    • 1
    Email author
  • Thiago A. Carniel
    • 1
  • Emilio C. N. Silva
    • 2
  • Andreas Öchsner
    • 3
  1. 1.Department of Mechanical Engineering Center for Technological SciencesSanta Catarina State University-UDESCJoinvilleBrazil
  2. 2.Department of Mechatronics and Mechanical Systems Engineering Mechanical Engineering BuildingUniversity of São PauloSão PauloBrazil
  3. 3.Faculty of Mechanical EngineeringTechnical University of MalaysiaJohorMalaysia

Personalised recommendations