Skip to main content

Fullerene (C60) and its Derivatives as Resists for Electron Beam Lithography

  • Chapter
  • First Online:
Carbon and Oxide Nanostructures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 5))

  • 1853 Accesses

Abstract

The application of fullerene as a negative resist was first studied by Tada and Kanayama who verified that this material could be used as a negative electron beam resist. Its small molecule enables the resist to have a resolution of at least 20 nm. Robinson et al. demonstrated that chemical modification of C60 by adding functional groups to the C60 cage can significantly enhance the resist properties. Chemical amplification of the fullerene derivatives improves their sensitivities while maintaining their high resolution. In this chapter, the concepts of lithography and lithography techniques which include electron beam lithography technology systems are described. Current electron beam resists and their characteristics are discussed. A review of the application of fullerene and its derivatives as electron beam resists is presented. Finally, concepts of chemical amplification and current chemically amplified resists are discussed.Device density of modern computer components has grown exponentially as predicted by Moore’s Law [1] with a decrease in components sizes. Smaller devices mean a reduced interconnect length, reducing the distance electrons have to travel and thus signal delay. Although photolithography has been the technique of choice for the fabrication of microdevices for many years, electron beam lithography is a very promising lithographic technique for nanoscale patterning due to its flexibility and nearly unlimited resolution capability, able to fabricate sub-50 nm features. A factor that influences its resolution is the electron beam resists. The application of fullerene as a negative resist was first studied by Tada and Kanayama [2] who verified that this material could be used as a negative electron beam resist. Its small molecule enables the resist to have a resolution of at least 20 nm. Robinson et al. [35] demonstrated that chemical modification of C60 by adding functional groups to the C60 cage can significantly enhance the resist properties. Chemical amplification of the fullerene derivatives improves their sensitivities while maintaining their high resolution [6, 7]. In this chapter, the concepts of lithography and lithography techniques which include electron beam lithography technology systems are described. Current electron beam resists and their characteristics are discussed. A review of the application of fullerene and its derivatives as electron beam resists is presented. Finally, concepts of chemical amplification and current chemically amplified resists are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, G.E.: Electronics 38, 114 (1965)

    Google Scholar 

  2. Tada, T., Kanayama, T.: Jpn J. Appl. Phys. 35, L63 (1998)

    Article  Google Scholar 

  3. Robinson, A.P.G.: PhD thesis, University of Birmingham, UK (1999)

    Google Scholar 

  4. Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Preece, J.A., Philp, D., Jonas, U., Deiderich, F.: Chem. Phys. Lett. 289, 586 (1998)

    Article  CAS  Google Scholar 

  5. Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Shelley, E.J., Philp, D., Preece, J.A.: Chem. Phys. Lett. 312, 469 (1999)

    Article  CAS  Google Scholar 

  6. Robinson, A.P.G., Zaid, H.M., Gibbons, F.P., Palmer, R.E., Manickam, M., Preece, J.A., Brainard, R., Zampini, T., O’Connell, K.: Microelectron. Eng. 83(4–9), 1115–1118 (2006)

    Article  CAS  Google Scholar 

  7. Gibbons, F.P., Zaid, H.M., Manickam, M., Preece, J.A., Palmer, R.E., Robinson, A.P.G.: Small 3(12), 2076–2080 (2007)

    Article  CAS  Google Scholar 

  8. Levinson, H.J., Arnold, W.H.: In: Rai Chaudhury, P. (ed.) Handbook of Microlithography, Micromachining, and Microfabrication, vol. 1. IEE, London (1997)

    Google Scholar 

  9. Ledwith, A.: In: Moss, S.J., Ledwith, A. (eds.) The Chemistry of the Semiconductor Industry. Blackie and Son Ltd, London (1987)

    Google Scholar 

  10. Ronse, K.: Microelectron. Eng. 67/68, 300 (2003)

    Article  CAS  Google Scholar 

  11. Lin, B.J., Rai-Choudhury, P.: In: Rai Chaudhury, P. (ed.) Handbook of Microlithography, Micromachining, and Microfabrication, vol. 1. IEE, London (1997)

    Google Scholar 

  12. Wallraff, G.M., Hinsberg, W.D.: Chem. Rev. 99, 1801 (1999)

    Article  CAS  Google Scholar 

  13. Harriott, L.R.: Proc. IEEE 89, 366 (2001)

    Article  Google Scholar 

  14. Brainard, R.L., Barclay, G.G., Anderson, E.H., Ocola, L.E.: Microelectron. Eng. 61/62, 707 (2002)

    Article  Google Scholar 

  15. Peckerar, M.C., Perkins, F.K., Dobisz, E.A., Glembocki, O.J.: In: Rai Chaudhury, P. (ed.) Handbook of Microlithography, Micromachining and Microfabrication, vol. 1. IEE, London (1997)

    Google Scholar 

  16. Brennan, K.F., Brown, A.S.: Theory of Modern Electronic Semiconductor Devices. Wiley, New York (2002)

    Book  Google Scholar 

  17. Ito, T., Okazaki, S.: Nature 406, 1027 (2000)

    Article  CAS  Google Scholar 

  18. Chan, S., Li, Y., Rothberg, L.J., Miller, B.L., Fauchet, P.M.: Mat. Sci. Eng. C Biomim. 15, 277 (2001)

    Article  Google Scholar 

  19. Takhistov, P.: Biosens. Bioelectron. 19, 1445 (2004)

    Article  CAS  Google Scholar 

  20. Mulkens, J., McClay, J., Tirri, B., Brunotte, M., Mecking, B., Jasper, H.: SPIE Proc. 5040, 753 (2003)

    Article  CAS  Google Scholar 

  21. Rothschild, M., Forte, A.R., Kunz, R.R., Palmateer, S.C., Sedlacek, J.H.C.: IBM J. Res. Dev. 41, 49 (1997)

    Article  CAS  Google Scholar 

  22. Piner, R.D., Zhu, J., Xu, F., Hong, S., Mirkin, C.A.: Science 283, 661 (1999)

    Article  CAS  Google Scholar 

  23. Guo, L.J.: J. Phys. D Appl. Phys. 37, R123 (2004)

    Article  CAS  Google Scholar 

  24. Austin, M.D., Ge, H., Wu, W., Li, M., Yu, Z., Wasserman, D., Lyon, S.A., Chou, S.Y.: Appl. Phys. Lett. 84, 5299 (2004)

    Article  CAS  Google Scholar 

  25. Melngailis, J., Mondelli, A.A., Berry III, I.L., Mohondro, R.: J. Vac. Sci. Technol. B 16, 927 (1998)

    Article  CAS  Google Scholar 

  26. Cerrina, F.: In: Rai Chaudhury, P. (ed.) Handbook of Microlithography, Micromachining and Microfabrication, vol. 1. IEE, London (1997)

    Google Scholar 

  27. Simon, G., Haghiri-Gosnet, A.M., Bourneix, J., Decanini, D., Chen, Y., Rousseaux, F., Launois, H., Vidal, B.: J. Vac. Sci. Technol. B 15, 2489 (1997)

    Article  CAS  Google Scholar 

  28. Silverman, J.P.: J. Vac. Sci. Technol. B 15, 2117 (1997)

    Article  CAS  Google Scholar 

  29. McCord, M.A., Rooks, M.J.: In: Rai Chaudhury, P. (ed.) Handbook of Microlithography, Micromachining, and Microfabrication, vol. 1. IEE, London (1997)

    Google Scholar 

  30. Roberts, E.D.: In: Moss, S.J., Ledwith, A. (eds.) The Chemistry of the Semiconductor Industry, p. 197. Blackie and Son Ltd, London (1987)

    Google Scholar 

  31. Berger, S.D., Gibson, J.M., Camarda, R.M., Farrow, R.C., Huggins, H.A., Kraus, J.S., Liddle, J.A.: J. Vac. Sci. Technol. B 9, 2996 (1991)

    Article  Google Scholar 

  32. Harriott, L.R.: J. Vac. Sci. Technol. B 15, 2130 (1997)

    Article  CAS  Google Scholar 

  33. Manako, S., Fujita, J., Ochiai, Y., Nomura, E., Matsui, S.: Jpn. J. Appl. Phys. 36, 7773 (1999)

    Article  Google Scholar 

  34. Henschel, W., Georgiev, Y.M., Kurz, H.: J. Vac. Sci. Technol. B 21, 2018 (2003)

    Article  CAS  Google Scholar 

  35. Hacker, N.P.: MRS Bull. 22, 33 (1997)

    CAS  Google Scholar 

  36. Aktary, M., Jensen, M.O., Westra, K.L., Brett, M.J., Freeman, M.R.: J. Vac. Sci. Technol. B 21, L5 (2003)

    Article  CAS  Google Scholar 

  37. Yasin, S., Hasko, D.G., Ahmed, H.: Appl. Phys. Lett. 78, 2760 (2001)

    Article  CAS  Google Scholar 

  38. Medeiros, D.R., Aviram, A., Guarnieri, C.R., Huang, W.-S., Kwong, R., Magg, C.K., Mahorowala, A.P., Moreau, W.M., Petrillo, K.E., Angelopoulos, M.: IBM J. Res. Dev. 45, 639 (2001)

    Article  CAS  Google Scholar 

  39. Matsuda, S.: Polym. Eng. Sci. 17, 410 (1977)

    Article  CAS  Google Scholar 

  40. Tada, T., Kanayama, T.: J. Vac. Sci. Technol. B 13, 2801 (1995)

    Article  CAS  Google Scholar 

  41. Word, M.J., Adesida, H., Berger, P.R.: J. Vac. Sci. Technol B 21, L12 (2003)

    Article  CAS  Google Scholar 

  42. Peuker, M., Lim, M.H., Smith, H.I., Morton, R., van Langen-Suurling, A.K., Romijn, J., van der Drift, E.W.J.M., van Delft, F.C.M.J.M.: Microelectron. Eng. 61/62, 803 (2002)

    Article  Google Scholar 

  43. van Delft, F.C.M.J.M., Weterings, J.P., van Langen-Suurling, A.K., Romijn, H.: J. Vac. Sci. Technol. B 18, 3419 (2000)

    Article  Google Scholar 

  44. Ishii, T., Tamamura, T., Shigehara, K.: Jpn. J. Appl. Phys. 39, L1068 (2000)

    Article  CAS  Google Scholar 

  45. Ishii, T., Murata, Y., Shigehara, K.: Jpn. J. Appl. Phys. 40, L478 (2001)

    Article  CAS  Google Scholar 

  46. Patsis, G.P., Gogolides, E., Van Werden, K.: Jpn. J. Appl. Phys. 44, 6341 (2005)

    Article  CAS  Google Scholar 

  47. Fujita, J., Ohnishi, Y., Ochiai, Y., Nomura, E., Matsui, S.: J. Vac. Sci. Technol. B 14, 4272 (1996)

    Article  CAS  Google Scholar 

  48. Yasin, S., Hasko, D.G.: J. Vac. Sci. Technol. B 19, 311 (2001)

    Article  CAS  Google Scholar 

  49. Manako, S., Ochiai, Y., Yamamoto, H., Teshima, T., Fujita, J., Nomura, E.: J. Vac. Sci. Technol. B 18, 3424 (2000)

    Article  CAS  Google Scholar 

  50. Kihara, N., Saito, S., Ushirogouchi, T., Nakase, M.: J. Photopolym. Sci. Technol. 11, 553 (1998)

    Article  CAS  Google Scholar 

  51. Tada, T., Kanayama, T., Robinson, A.P.G., Palmer, R.E., Allen, M.T., Preece, J.A., Harris, K.D.M.: Microelectron. Eng. 53, 425 (2000)

    Article  CAS  Google Scholar 

  52. Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Allen, M.T., Preece, J.A., Harris, K.D.M.: J. Vac. Sci. Technol. B 18, 2730 (2000)

    Article  CAS  Google Scholar 

  53. Sailer, H., Ruderisch, A., Kern, D.P., Schurig, V.: J. Vac. Sci. Technol. B 20, 2958 (2002)

    Article  CAS  Google Scholar 

  54. Saito, S., Kihara, N., Ushirogouchi, T.: Microelectron. Eng. 61/62, 777 (2002)

    Article  Google Scholar 

  55. Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Allen, M.T., Preece, J.A., Harris, K.D.M.: J. Phys. D Appl. Phys. 32, L75 (1999)

    Article  CAS  Google Scholar 

  56. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: Nature 318, 162 (1985)

    Article  CAS  Google Scholar 

  57. Zaid, H.M.: PhD thesis, University of Birmingham, UK (2006)

    Google Scholar 

  58. Tada, T., Uekusa, K., Kanayama, T., Nakayama, T., Chapman, R., Cheung, W.Y., Eden, L., Hussain, I., Jenning, M., Perkins, J., Phillips, M., Preece, J.A., Shelley, E.: Microelectron. Eng. 61–62, 737 (2002)

    Article  Google Scholar 

  59. Ito, H.: Jpn. J. Appl. Phys. 31, 4273 (1992)

    Article  CAS  Google Scholar 

  60. Ito, H.: J. Polym. Sci. 41, 3863 (2003)

    CAS  Google Scholar 

  61. Ito, H.: IBM J. Res. Dev. 41, 69 (1997)

    Article  CAS  Google Scholar 

  62. Hinsberg, W.D., Wallraff G.M., Allen, R.D., et al.: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 15. Wiley, New York (1998)

    Google Scholar 

  63. Liu, H., de Grandpre, M.P., Feely, W.E.: J. Vac. Sci. Technol. B 6, 379 (1988)

    Article  CAS  Google Scholar 

  64. Yoshimura, T., Nakayama, Y., Okazaki, S.: J. Vac. Sci. Technol. B 10, 2615 (1992)

    Article  CAS  Google Scholar 

  65. Azuma, T., Masui, K., Takigami, Y., Sasaki, H., Sakai, K., Nomaki, T., Kato, Y., Mori, I.: Jpn. J. Appl. Phys. 30, 3138 (1991)

    Article  CAS  Google Scholar 

  66. Dentinger, P.M., Taylor, J.W.: J. Vac. Sci. Technol. B 15, 2632 (1997)

    Article  CAS  Google Scholar 

  67. Kudryashov, V., Yuan, X.-C., Cheong, W.-C., Radhakrishnan, K.: Microelectron. Eng. 67–68, 306 (2003)

    Article  CAS  Google Scholar 

  68. Pépin, A., Studer, V., Decanini, D., Chen, Y.: Microelectron. Eng. 73–74, 233 (2004)

    Article  Google Scholar 

  69. van Delft, F.C.M.J.M., Holthuysen, F.G.: Microelectron. Eng. 46, 383 (1999)

    Google Scholar 

  70. Macintyre, D., Thoms, S.: Microelectro. Eng. 35, 213 (1997)

    Google Scholar 

  71. Cui, Z., Prewett. P.: Microelectron. Eng. 46, 255 (1999)

    Google Scholar 

  72. Cui, Z., Gerardino, A., Gentili, M., DiFabrizio, E.: J. Vac. Sci. Technol. B 16, 3284 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasnah Mohd Zaid .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zaid, H.M. (2010). Fullerene (C60) and its Derivatives as Resists for Electron Beam Lithography. In: Carbon and Oxide Nanostructures. Advanced Structured Materials, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_13

Download citation

Publish with us

Policies and ethics