Thermal Residual Stresses in Aluminium Matrix Composites

  • F. Teixeira-DiasEmail author
  • L. F. Menezes
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 2)


It is well known that residual stresses strongly influence the behaviour of most materials and, in particular, of composite materials. This chapter presents one approach to the numerical determination of thermal residual stresses in metal matrix composites (MMC). The subject of residual stresses is introduced and the corresponding mathematical and constitutive models are described in detail. It is considered that the reinforcement material is elastic and that the metallic matrix may exhibit thermoelastic-viscoplastic behaviour. A progressive gradient based time-integration algorithm is described that leads to the implementation of the proposed constitutive models in a finite element analysis code. The corresponding variational formulation and discretisation into finite elements is also described. In order to guarantee stabilised convergence and to increase the precision of results, the authors also propose a time-step optimisation algorithm. All the formalisms are tested measuring the influence of the reinforcement volume fraction and cooling rate on the resulting residual stresses.


Residual Stress Metal Matrix Composite Plastic Strain Increment Previous Relation Internal State Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual stresses in thermoplastic composites – a study of the literature – Part I: Formation of residual stresses. Compos. Part A 37(11), 1847–1857 (2006)CrossRefGoogle Scholar
  2. 2.
    Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual stresses in thermoplastic composites – a study of the literature – Part II: Experimental techniques. Compos. Part A 38(3), 651–665 (2006)CrossRefGoogle Scholar
  3. 3.
    Liu, H.T., Sun, L.Z.: Effects of thermal residual stresses on effective elastoplastic behavior of metal matrix composites. Int. J. Solids Struct. 41(8), 2189–2203 (2004)CrossRefGoogle Scholar
  4. 4.
    Meijer, G., Ellyin, F., Xia, Z.: Aspects of residual thermal stress/strain in particle reinforced metal matrix composites. Compos. Part B 31(1), 29–37 (2000)CrossRefGoogle Scholar
  5. 5.
    Huang, Z.-M.: Cyclic response of metal matrix composite laminates subjected to thermomechanical fatigue loads. Int. J. Fatigue 24, 463–475 (2002)CrossRefGoogle Scholar
  6. 6.
    Gungor, S.: Residual stress measurements in fibre reinforced titanium alloy composites. Acta Mater. 50(8), 2053–2073 (2002)CrossRefGoogle Scholar
  7. 7.
    Altan, G., Topcu, M.: Thermo-elastic stress of a metal-matrix composite disc under linearly-increasing temperature loading by analytical and FEM analysis. Adv. Eng. Softw. 41(4), 604–610 (2010)CrossRefGoogle Scholar
  8. 8.
    Rudajevova, A., Milicka, K.: Residual and thermal strain in AX41 magnesium alloy reinforced with short Saffil fibres. Compos. Sci. Technol 68(12), 2474–2478 (2008)CrossRefGoogle Scholar
  9. 9.
    Sayman, O.: An elastic-plastic thermal stress analysis of aluminum metal-matrix composite beams. Compos. Struct. 53(4), 419–425 (2001)CrossRefGoogle Scholar
  10. 10.
    Sayman, O., Ozer, M.R.: Elastic-plastic thermal stress analysis of aluminum-matrix composite beams under a parabolically temperature distribution. Compos. Sci. Technol. 61(14), 2129–2137 (2001)CrossRefGoogle Scholar
  11. 11.
    Zhang, H., Ramesh, K.T., Chin, E.S.C.: A multi-axial constitutive model for metal matrix composites. J. Mech. Phys. Solids 56(10), 2972–2983 (2008)CrossRefGoogle Scholar
  12. 12.
    Ju, D.-Y.: Simulation of the thermo-mechanical and interfacial stress of metal matrix composites under thermal shock process. Compos. Struct. 48, 113–118 (2000)CrossRefGoogle Scholar
  13. 13.
    Choo, H., Bourke, M.A.M., Daymond, M.R.: A finite-element analysis of the inelastic relaxation of thermal residual stresses in continuous-fibre-reinforced composites. Compos. Sci. Technol 61(12), 1757–1772 (2001)CrossRefGoogle Scholar
  14. 14.
    Teixeira-Dias, F., Menezes, L.F.: Numerical determination of the influence of the cooling rate and reinforcement volume fraction on the levels of residual stresses in Al-SiC composites. Comput. Mater. Sci. 21(1), 26–36 (2001)CrossRefGoogle Scholar
  15. 15.
    Teixeira-Dias, F., Andrade-Campos, A., Pinho-da-Cruz, J.: On the effect of the orientation of the reinforcement on the overall behaviour of Al-SiCp composites. Comput. Struct. 82, 1323–1331 (2004)CrossRefGoogle Scholar
  16. 16.
    Ledbetter, H.M., Austin, M.W.: Internal strain (stress) in an SiC–Al particle-reinforced composite: an X-ray diffraction study. Mater. Sci. Eng. 89, 53–61 (1987)CrossRefGoogle Scholar
  17. 17.
    Kolhe, R., Hui, C.Y., Ustundag, E., Sass, S.L.: Residual thermal stresses and calculation of the critical metal particle size for interfacial crack extension in metal-ceramic matrix composites. Acta Mater. 44(1), 279–287 (1996)CrossRefGoogle Scholar
  18. 18.
    Fernandez, P., Fernandez, R., Gonzalez-Doncel, G., Bruno, G.: Correlation between matrix residual stresses and composite yield strength in PM 6061-Al-15 vol.% SiCw. Scripta Mater. 52(8), 793–797 (2004)Google Scholar
  19. 19.
    Jiang, Z., Li, G., Lian, J., Ding, X., Sun, J.: Elastic-plastic stress transfer in short fibre-reinforced metal-matrix composites. Compos. Sci. Technol. 64, 1661–1670 (2004)CrossRefGoogle Scholar
  20. 20.
    Fang, Q., Sidky, P.S., Hocking, G.M.: Residual stresses in titanium matrix composites (TMC) in thermomechanical cycling using matrix etching. Mater. Sci. Eng. 288(2), 293–297 (2000)CrossRefGoogle Scholar
  21. 21.
    Bruno, G., Fernandez, R., Gonzalez-Doncel, G.: Relaxation of the residual stress in 6061 Al-15 vol.% SiCw composites by isothermal annealing. Mater. Sci. Eng. 382, 188–197 (2004)CrossRefGoogle Scholar
  22. 22.
    Michel, J.C., Suquet, P.: An analytical and numerical study of the overall behaviour of metal-matrix composites. Model. Simulat. Mater. Sci. Eng. 2(3A), 637–658 (1994)CrossRefGoogle Scholar
  23. 23.
    Ramakrishnan, N.: An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater. 44(1), 69–77 (1996)CrossRefGoogle Scholar
  24. 24.
    Shen, Y.-L., Finot, M., Needleman, A., Suresh, S.: Effective elastic response of two-phase composites. Acta Mater. 42(1), 77–97 (1994)CrossRefGoogle Scholar
  25. 25.
    Zahl, D.B.: The effect of interfacial sliding on the strength of metal matrix composites. Comput. Mater. Sci. 1(3), 249–258 (1993)CrossRefGoogle Scholar
  26. 26.
    Ho, S., Saigal, A.: Thermal residual stresses and mechanical behavior of cast SiC/Al composites. Mater. Sci. Eng. A 183, 39–47 (1994)CrossRefGoogle Scholar
  27. 27.
    Shaw, L.L., Miracle, D.B.: Effects of an interfacial region on the transverse behavior of metal-matrix composites – a finite element analysis. Acta Mater. 44(5), 2043–2055 (1996)CrossRefGoogle Scholar
  28. 28.
    Anand, L.: Constitutive equations for hot-working of metals. Int. J. Plast. 1(3), 213–231 (1985)CrossRefGoogle Scholar
  29. 29.
    Shen, Y.-L., Finot, M., Needleman, A., Suresh, S.: Effective plastic response of two-phase composites. Acta Mater. 43(4), 1701–1722 (1995)CrossRefGoogle Scholar
  30. 30.
    Suéry, M., Teodosiu, C., Menezes, L.F.: Thermal residual stresses in particle-reinforced viscoplastic metal matrix composites. Mater. Sci. Eng. A 167, 97–105 (1993)CrossRefGoogle Scholar
  31. 31.
    Hughes, T.J.R.: Numerical implementation of constitutive models: rate independent deviatoric plasticity, theoretical foundations for large scale computations of nonlinear material behaviour. Martinus Nighoff, The Netherlands (1994)Google Scholar
  32. 32.
    Zywicz, E., Parks, D.M.: Thermo-viscoplastic residual stresses in metal matrix composites. Compos. Sci. Technol. 33(4), 295–315 (1988)CrossRefGoogle Scholar
  33. 33.
    Brown, S.B., Kim, K.H., Anand, L.: An internal variable constitutive model for hot working of metals. Int. J. Plast. 5(2), 95–130 (1989)CrossRefGoogle Scholar
  34. 34.
    Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynaics and kinetics of slip. Pergamon, Oxford (1975)Google Scholar
  35. 35.
    Lush, A.M., Weber, G., Anand, L.: An implicit time-integration procedure for a set of internal variable constitutive equations for isotropic elasto-viscoplasticity. Int. J. Plast. 5(5), 521–549 (1989)CrossRefGoogle Scholar
  36. 36.
    Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79(2), 173–202 (1990)CrossRefGoogle Scholar
  37. 37.
    Weber, G., Lush, A.M., Zavaliangos, A., Anand, L.: An objective time-integration procedure for isotropic rate-independent and rate-dependent elastic-plastic constitutive equations. Int. J. Plast. 6(6), 701–744 (1990)CrossRefGoogle Scholar
  38. 38.
    Teixeira-Dias, F., Menezes, L.F.: A kinematic and incremental integration model for the micromechanical numerical analysis of dual-phase materials. Comput. Mater. Sci. 25, 237–245 (2002)CrossRefGoogle Scholar
  39. 39.
    Pierce, D., Shih, C.F., Needleman, A.: A tangent modulus method for rate dependent solids. Comput. Struct. 18(5), 875–887 (1984)CrossRefGoogle Scholar
  40. 40.
    Dhatt, G., Touzout, G.: The finite element method displayed. Wiley, New York (1984)Google Scholar
  41. 41.
    Hughes, T.J.R.: The finite element method – linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs (1987)Google Scholar
  42. 42.
    Nagtegaal, J.C., Parks, D.M., Rice, J.R.: On numerically accurate finite element solutions in the fully plastic range. Comput. Methods. Appl. Mech. Eng. 4(2), 153–177 (1974)CrossRefGoogle Scholar
  43. 43.
    Takizawa, H., Makinouchi, A., Santos, A., Mori, N.: FE-Simulation of 3D Sheet Metal Forming Processes in Automotive Industry, VDI Berichte, vol 894, pp 167–184. VDI Verlag (1991)Google Scholar
  44. 44.
    Malkus, D.S., Hughes, T.J.R.: Mixed finite element methods – reduced and selective integration techniques: a unification of concepts. Comput. Methods Appl. Mech. Eng. 15(1), 63–81 (1978)CrossRefGoogle Scholar
  45. 45.
    Hughes, T.J.R.: Generalization of selective integration procedures to anisotropic and nonlinear media. Int. J. Numer. Methods Eng. 15(9), 1413–1418 (1980)CrossRefGoogle Scholar
  46. 46.
    Shimodaira, H.: Equivalence between mixed models and displacement models sing reduced integration. Int. J. Numer. Methods Eng. 21(1), 89–104 (1985)CrossRefGoogle Scholar
  47. 47.
    Menezes, L.F., Teodosiu, C., Makinouchi, A.: FE-Simulation of 3D Sheet Metal Forming Processes in Automotive Industry, VDI Berichte, vol 894, pp 381–403. VDI Verlag (1991)Google Scholar
  48. 48.
    Sautter, M., Dietrich, Ch, Poech, M.H., Schmauder, S., Fischmeister, H.F.: Finite element modelling of a transverse-loaded fibre composite effects of section size and net density. Comput. Mater. Sci. 1(3), 225–233 (1993)CrossRefGoogle Scholar
  49. 49.
    Sorensen, N.J., Suresh, S., Tvergaard, V., Needleman, A.: Effects of reinforcement orientation on the tensile response of metal-matrix composites. Mater. Sci. Eng. A 197(1), 1–10 (1995)CrossRefGoogle Scholar
  50. 50.
    Watt, D.F., Xu, X.Q., Lloyd, D.J.: Effects of particle morphology and spacing on the strain fields in a plastically deforming matrix. Acta Mater. 44(2), 789–799 (1996)CrossRefGoogle Scholar
  51. 51.
    Pettermann, H.E., Boehm, H.J., Rammerstorfer, F.G.: Some direction-dependent properties of matrix-inclusion type composites with given reinforcement orientation distributions. Compos. Part B 28(3), 253–265 (1997)CrossRefGoogle Scholar
  52. 52.
    Jain, M., MacEwen, S.R., Wu, L.: Finite element modelling of residual stresses and strength differential effect in discontinuously reinforced metal matrix composites. Mater. Sci. Eng. A 183(1–2), 111–120 (1994)Google Scholar
  53. 53.
    Manoharan, M., Gupta, M.: Effect of silicon carbide volume fraction on the work hardening behaviour of thermomechanically processed aluminium-based metal matrix composites. Compos. Part B 30(1), 107–112 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.GRIDS–DAPS Division of Armour & Protection Systems, Department of Mechanical EngineeringUniversidade de AveiroAveiroPortugal
  2. 2.Department of Mechanical EngineeringUniversidade de CoimbraCoimbraPortugal

Personalised recommendations