America C on Q of HC in, Medicine I: To Err Is Human: Building a Safer Health System. National Academies Press, Washington (2000)
Google Scholar
Pham, J.C., Aswani, M.S., Rosen, M., et al.: Reducing medical errors and adverse events. Annu. Rev. Med. 63, 447–463 (2012). Doi:10.1146/annurev-med-061410-121352
CAS
CrossRef
PubMed
Google Scholar
FastStats: http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. Accessed 14 June 2016
Van Den Bos, J., Rustagi, K., Gray, T., et al.: The $17.1 billion problem: the annual cost of measurable medical errors. Health Aff. (Millwood) 30, 596–603 (2011). Doi:10.1377/hlthaff.2011.0084
CrossRef
Google Scholar
Kunkler, K.: The role of medical simulation: an overview. Int. J. Med. Robot. 2, 203–210 (2006). Doi:10.1002/rcs.101
CrossRef
PubMed
Google Scholar
Doherty-Restrepo, J.L., Tivener, K.: Current literature summary: review of high-fidelity simulation in professional education. Athl. Train. Educ. J. 9, 190–192 (2014). Doi:10.4085/0904190
CrossRef
Google Scholar
Cox, M., Irby, D.M., Reznick, R.K., MacRae, H.: Teaching surgical skills—changes in the wind. N. Engl. J. Med. 355, 2664–2669 (2006). Doi:10.1056/NEJMra054785
CrossRef
Google Scholar
Stunt, J., Wulms, P.-B., Kerkhoffs, G., et al.: How valid are commercially available medical simulators? Adv. Med. Educ. Pract., 385 (2014). Doi:10.2147/AMEP.S63435
Cohen, J., Thompson, C.C.: The next generation of endoscopic simulation. Am. J. Gastroenterol. 108, 1036–1039 (2013). Doi:10.1038/ajg.2012.390
ADS
CrossRef
PubMed
Google Scholar
Nesbitt, J.C., St Julien, J., Absi, T.S., et al.: Tissue-based coronary surgery simulation: medical student deliberate practice can achieve equivalency to senior surgery residents. J. Thorac. Cardiovasc. Surg. 145, 1453–1459 (2013). Doi:10.1016/j.jtcvs.2013.02.048
CrossRef
PubMed
Google Scholar
Cohen, J., Bosworth, B.P., Chak, A., et al.: Preservation and incorporation of valuable endoscopic innovations (PIVI) on the use of endoscopy simulators for training and assessing skill. Gastrointest. Endosc. 76, 471–475 (2012). Doi:10.1016/j.gie.2012.03.248
ADS
CrossRef
PubMed
Google Scholar
Lim, Y.-J., Deo, D., Singh, T.P., et al.: In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation. Surg. Endosc. 23, 1298–1307 (2009). Doi:10.1007/s00464-008-0154-z
CrossRef
PubMed
Google Scholar
Barsness, K.A., Rooney, D.M., Davis, L.M.: The development and evaluation of a novel thoracoscopic diaphragmatic hernia repair simulator. J. Laparoendosc. Adv. Surg. Tech. 23, 714–718 (2013). Doi:10.1089/lap.2013.0196
CrossRef
Google Scholar
Wurm, G., Lehner, M., Tomancok, B., et al.: Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg. Innov. 18, 294–306 (2011). Doi:10.1177/1553350610395031
CrossRef
PubMed
Google Scholar
Sakezles, C.: Synthetic human tissue models can reduce the cost of device development. Med. Device Technol. 20 (2009)
Google Scholar
Poniatowski, L.H., Wolf, J.S., Nakada, S.Y., et al.: Validity and acceptability of a high-fidelity physical simulation model for training of laparoscopic pyeloplasty. J. Endourol. 28, 393–398 (2014). Doi:10.1089/end.2013.0678
CrossRef
PubMed
Google Scholar
Hibbeler, R.C.: Mechanics of materials. Prentice Hall, Upper Saddle River (2000)
Google Scholar
Athanasiou, K.A., Natoli, R.M.: Introduction to continuum biomechanics. Synth. Lect. Biomed. Eng. 3, 1–206 (2008). Doi:10.2200/S00121ED1V01Y200805BME019
CrossRef
Google Scholar
Özkaya, N., Nordin, M., Goldsheyder, D., Leger, D.: Mechanical Properties of Biological Tissues. In: Fundam. Biomech., pp. 221–236. Springer, New York (2012)
Google Scholar
Charlebois, M., Jirásek, M., Zysset, P.K.: A nonlocal constitutive model for trabecular bone softening in compression. Biomech. Model. Mechanobiol. 9, 597–611 (2010). Doi:10.1007/s10237-010-0200-3
CrossRef
PubMed
Google Scholar
Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000). Doi:10.5254/1.3547602
CAS
CrossRef
Google Scholar
Bower, A.F.: Applied Mechanics of Solids. CRC Press (2009). https://www.crcpress.com/Applied-Mechanics-of-Solids/Bower/p/book/9781439802472. Accessed 14 June 2016
Google Scholar
Johansson, T., Meier, P., Blickhan, R.: A finite-element model for the mechanical analysis of skeletal muscles. J. Theor. Biol. 206, 131–149 (2000). Doi:10.1006/jtbi.2000.2109
CAS
CrossRef
PubMed
Google Scholar
Zobitz, M.E., Luo, Z.-P., An, K.-N.: Determination of the compressive material properties of the supraspinatus tendon. J. Biomech. Eng. 123, 47–51 (2000). Doi:10.1115/1.1339816
CrossRef
Google Scholar
Shearer, T.: A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure. J. Biomech. 48, 290–297 (2015). Doi:10.1016/j.jbiomech.2014.11.031
CrossRef
PubMed
Google Scholar
Groves, R.B., Coulman, S.A., Birchall, J.C., Evans, S.L.: An anisotropic, hyperelastic model for skin: Experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167–180 (2013). Doi:10.1016/j.jmbbm.2012.10.021
CrossRef
PubMed
Google Scholar
Kaster, T., Sack, I., Samani, A.: Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44, 1158–1163 (2011). Doi:10.1016/j.jbiomech.2011.01.019
CAS
CrossRef
PubMed
Google Scholar
Roeder, R.K.: Mechanical characterization of biomaterials. Charact. Biomater. Newnes, 49–104 (2013)
Google Scholar
Flügge, W.: Viscoelasticity. Springer Science & Business Media, Berlin (2013)
Google Scholar
Oyen, M.L.: Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59, 44–59 (2013). Doi:10.1179/1743280413Y.0000000022
CrossRef
Google Scholar
Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980). Doi:10.1115/1.3138202
CAS
CrossRef
PubMed
Google Scholar
Simon, B.R.: Multiphase poroelastic finite element models for soft tissue structures. Appl. Mech. Rev. 45, 191–218 (1992)
ADS
MathSciNet
CrossRef
Google Scholar
Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40, 117–124 (2007). Doi:10.1016/j.jbiomech.2005.11.004
CrossRef
PubMed
Google Scholar
Raghunathan, S., Sparks, J.L.: Biphasic Poroviscoelastic Modeling of the Unconfined Compression of Porcine Liver Tissue, pp. 787–788 (2009). Doi:10.1115/SBC2009-205045
Moran, E.C., LeRoith, T., Smith, T.L., et al.: Porohyperviscoelastic model simultaneously predicts parenchymal fluid pressure and reaction force in perfused liver. J. Biomech. Eng. 134, 91002 (2012)
CrossRef
Google Scholar
Evans, D.W., Moran, E.C., Baptista, P.M., et al.: Scale-dependent mechanical properties of native and decellularized liver tissue. Biomech. Model. Mechanobiol. 12, 569–580 (2013)
CrossRef
PubMed
Google Scholar
Nishii, K., Reese, G., Moran, E.C., Sparks, J.L.: Multiscale computational model of fluid flow and matrix deformation in decellularized liver. J. Mech. Behav. Biomed. Mater. 57, 201–214 (2016). Doi:10.1016/j.jmbbm.2015.11.033
CrossRef
PubMed
Google Scholar
Ní Annaidh, A., Bruyère, K., Destrade, M., et al.: Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5, 139–148 (2012). Doi:10.1016/j.jmbbm.2011.08.016
CrossRef
PubMed
Google Scholar
Gennisson, J.-L., Deffieux, T., Macé, E., et al.: Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med. Biol. 36, 789–801 (2010). Doi:10.1016/j.ultrasmedbio.2010.02.013
CrossRef
PubMed
Google Scholar
Sasaki, N., Matsushima, N., Ikawa, T., et al.: Orientation of bone mineral and its role in the anisotropic mechanical properties of bone—transverse anisotropy. J. Biomech. 22, 157–164 (1989). Doi:10.1016/0021-9290(89)90038-9
CAS
CrossRef
PubMed
Google Scholar
Ohashi, T., Abe, H., Matsumoto, T., Sato, M.: Pipette aspiration technique for the measurement of nonlinear and anisotropic mechanical properties of blood vessel walls under biaxial stretch. J. Biomech. 38, 2248–2256 (2005). Doi:10.1016/j.jbiomech.2004.09.019
CrossRef
PubMed
Google Scholar
Chagnon, G., Rebouah, M., Favier, D.: Hyperelastic energy densities for soft biological tissues: a review. J. Elast. 120, 129–160 (2015). Doi:10.1007/s10659-014-9508-z
MathSciNet
CrossRef
MATH
Google Scholar
Macosko, C.W.: Rheology: Principles, Measurements, and Applications. VCH (1994)
Google Scholar
Junqueira, L.C., Carneiro, J.: Basic Histology: Text and Atlas. McGraw-Hill, New York (2005)
Google Scholar
Moore, K.L., Dalley, A.F., Agur, A.M.R.: Clinically Oriented Anatomy. Lippincott Williams & Wilkins, Philadelphia (2013)
Google Scholar
Clarke, B.: Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. CJASN 3, S131–S139 (2008). Doi:10.2215/CJN.04151206
CAS
CrossRef
PubMed
Google Scholar
Jor, J.W.Y., Parker, M.D., Taberner, A.J., et al.: Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 539–556 (2013). Doi:10.1002/wsbm.1228
CrossRef
PubMed
Google Scholar
Simms, C.K.: Passive skeletal muscle mechanical behaviour: considerations for constitutive modelling. Comput. Meth. Biomech. Biomed. Eng. 15, 271 (2012). Doi:10.1080/10255842.2012.713591
CrossRef
Google Scholar
Ren, L., Yang, P., Wang, Z., et al.: Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J. Mech. Behav. Biomed. Mater. 50, 104–122 (2015). Doi:10.1016/j.jmbbm.2015.04.021
CAS
CrossRef
PubMed
Google Scholar
Vito, R.P., Dixon, S.A.: Blood vessel constitutive models—1995–2002. Annu. Rev. Biomed. Eng. 5, 413–439 (2003). Doi:10.1146/annurev.bioeng.5.011303.120719
CAS
CrossRef
PubMed
Google Scholar
Agache, P.G., Monneur, C., Leveque, J.L., De Rigal, J.: Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. Res. 269, 221–232 (1980). Doi:10.1007/BF00406415
CAS
CrossRef
PubMed
Google Scholar
Ottenio, M., Tran, D., Ní Annaidh, A., et al.: Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J. Mech. Behav. Biomed. Mater. 41, 241–250 (2015). Doi:10.1016/j.jmbbm.2014.10.006
CAS
CrossRef
PubMed
Google Scholar
John, W., Chow, W.G.D.: Determining the force-length-velocity relations of the quadriceps muscles: II. Maximum muscle stress. Hum. Kinet. J. 15, 191–199 (1999)
Google Scholar
Chakouch, M.K., Charleux, F., Bensamoun, S.F.: Quantifying the elastic property of nine thigh muscles using magnetic resonance elastography. PLoS ONE 10, e0138873 (2015). Doi:10.1371/journal.pone.0138873
CrossRef
PubMed
PubMed Central
Google Scholar
Imbert, L., Aurégan, J.-C., Pernelle, K., Hoc, T.: Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone 65, 18–24 (2014). Doi:10.1016/j.bone.2014.04.030
CAS
CrossRef
PubMed
Google Scholar
Kobielarz, M., Chwiłkowska, A., Turek, A., et al.: Mechanical properties of selective digestion of elastin and collagen from human aortas (2015). Doi:10.5277/ABB-00184-2014-02
Karimi, A., Navidbakhsh, M., Shojaei, A., Faghihi, S.: Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater. Sci. Eng. C 33, 2550–2554 (2013). Doi:10.1016/j.msec.2013.02.016
CAS
CrossRef
Google Scholar
Alhosseini Hamedani, B., Navidbakhsh, M., Ahmadi Tafti, H.: Comparison between mechanical properties of human saphenous vein and umbilical vein. Biomed. Eng. OnLine 11, 59 (2012). Doi:10.1186/1475-925X-11-59
CrossRef
Google Scholar
Egorov, V.I., Schastlivtsev, I.V., Prut, E.V., et al.: Mechanical properties of the human gastrointestinal tract. J. Biomech. 35, 1417–1425 (2002). Doi:10.1016/S0021-9290(02)00084-2
CrossRef
PubMed
Google Scholar
Nava, A., Mazza, E., Furrer, M., et al.: In vivo mechanical characterization of human liver. Med. Image Anal. 12, 203–216 (2008). Doi:10.1016/j.media.2007.10.001
CAS
CrossRef
PubMed
Google Scholar
Fernández Farrés, I., Norton, I.T.: Formation kinetics and rheology of alginate fluid gels produced by in-situ calcium release. Food Hydrocoll. 40, 76–84 (2014). Doi:10.1016/j.foodhyd.2014.02.005
CrossRef
Google Scholar
Draget, K.I., Østgaard, K., Smidsrød, O.: Alginate-based solid media for plant tissue culture. Appl. Microbiol. Biotechnol. 31, 79–83 (1989). Doi:10.1007/BF00252532
CAS
CrossRef
Google Scholar
Drury, J.L., Dennis, R.G., Mooney, D.J.: The tensile properties of alginate hydrogels. Biomaterials 25, 3187–3199 (2004). Doi:10.1016/j.biomaterials.2003.10.002
CAS
CrossRef
PubMed
Google Scholar
Yang, C.H., Wang, M.X., Haider, H., et al.: Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 5, 10418–10422 (2013). Doi:10.1021/am403966x
CAS
CrossRef
PubMed
Google Scholar
Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006). Doi:10.1002/adma.200501612
CAS
CrossRef
Google Scholar
Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012). Doi:10.1016/j.addr.2012.09.010
CrossRef
Google Scholar
Fitzgerald, M.M., Bootsma, K., Berberich, J.A., Sparks, J.L.: Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue. Biomacromolecules 16, 1497–1505 (2015). Doi:10.1021/bm501845j
CAS
CrossRef
PubMed
Google Scholar
Kuo, C.K., Ma, P.X.: Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22, 511–521 (2001). Doi:10.1016/S0142-9612(00)00201-5
CAS
CrossRef
PubMed
Google Scholar
Draget, K.I., Østgaard, K., Smidsrød, O.: Homogeneous alginate gels: a technical approach. Carbohydr. Polym. 14, 159–178 (1990). Doi:10.1016/0144-8617(90)90028-Q
CAS
CrossRef
Google Scholar
Sun, J.-Y., Zhao, X., Illeperuma, W.R.K., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). Doi:10.1038/nature11409
ADS
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mancini, M., Moresi, M., Rancini, R.: Mechanical properties of alginate gels: empirical characterisation. J. Food Eng. 39, 369–378 (1999). Doi:10.1016/S0260-8774(99)00022-9
CrossRef
Google Scholar
Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E.: Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, Cambridge (2004)
Google Scholar
Stellwagen, J., Stellwagen, N.C.: Internal structure of the agarose gel matrix. J. Phys. Chem. 99, 4247–4251 (1995). Doi:10.1021/j100012a054
CAS
CrossRef
Google Scholar
Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001). Doi:10.1021/cr000108x
CAS
CrossRef
PubMed
Google Scholar
Normand, V., Lootens, D.L., Amici, E., et al.: New insight into agarose gel mechanical properties. Biomacromolecules 1, 730–738 (2000). Doi:10.1021/bm005583j
CAS
CrossRef
PubMed
Google Scholar
Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003). Doi:10.1002/adma.200304907
CAS
CrossRef
Google Scholar
Darnell, M.C., Sun, J.-Y., Mehta, M., et al.: Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34, 8042–8048 (2013). Doi:10.1016/j.biomaterials.2013.06.061
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Zhang, J., Daubert, C.R., Foegeding, E.A.: Characterization of polyacrylamide gels as an elastic model for food gels. Rheol. Acta 44, 622–630 (2005). Doi:10.1007/s00397-005-0444-5
CAS
CrossRef
Google Scholar
Herrick, W.G., Nguyen, T.V., Sleiman, M., et al.: PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology. Biomacromolecules 14, 2294–2304 (2013). Doi:10.1021/bm400418g
CAS
CrossRef
PubMed
Google Scholar
Tanaka, Y., Kuwabara, R., Na, Y.-H., et al.: Determination of fracture energy of high strength double network hydrogels. J. Phys. Chem. B 109, 11559–11562 (2005). Doi:10.1021/jp0500790
CAS
CrossRef
PubMed
Google Scholar
Suthar, B., Xiao, H.X., Klempner, D., Frisch, K.C.: A review of kinetic studies on the formation of interpenetrating polymer networks. Polym. Adv. Technol. 7, 221–233 (1996). Doi:10.1002/(SICI)1099-1581(199604)7:4<221:AID-PAT529>3.0.CO;2-A
CAS
CrossRef
Google Scholar
Teramoto, N., Saitoh, M., Kuroiwa, J., et al.: Morphology and mechanical properties of pullulan/poly(vinyl alcohol) blends crosslinked with glyoxal. J. Appl. Polym. Sci. 82, 2273–2280 (2001). Doi:10.1002/app.2075
CAS
CrossRef
Google Scholar
Stammen, J.A., Williams, S., Ku, D.N., Guldberg, R.E.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22, 799–806 (2001). Doi:10.1016/S0142-9612(00)00242-8
CAS
CrossRef
PubMed
Google Scholar
Wan, W.K., Campbell, G., Zhang, Z.F., et al.: Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J. Biomed. Mater. Res. 63, 854–861 (2002). Doi:10.1002/jbm.10333
CAS
CrossRef
PubMed
Google Scholar
Zhu, J.: Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31, 4639–4656 (2010). Doi:10.1016/j.biomaterials.2010.02.044
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Rahimi, A., Mashak, A.: Review on rubbers in medicine: natural, silicone and polyurethane rubbers. Plast. Rubber Compos. 42, 223–230 (2013). Doi:10.1179/1743289811Y.0000000063
CAS
CrossRef
Google Scholar
Frogley, M., Ravich, D., Wagner, H.D.: Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647–1654 (2003). Doi:10.1016/S0266-3538(03)00066-6
CAS
CrossRef
Google Scholar
Lötters, J.C., Olthuis, W., Veltink, P.H., Bergveld, P.: The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145–147 (1997). Doi:10.1088/0960-1317/7/3/017
CrossRef
Google Scholar
Özbaş, Z., Gürdağ, G.: Swelling kinetics, mechanical properties, and release characteristics of chitosan-based semi-IPN hydrogels. J. Appl. Polym. Sci. 132, n/a–n/a (2015). Doi:10.1002/app.41886
Google Scholar
Chen, Q., Zhu, L., Huang, L., et al.: Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules 47, 2140–2148 (2014). Doi:10.1021/ma402542r
ADS
CAS
CrossRef
Google Scholar
Hu, J., Kurokawa, T., Nakajima, T., et al.: High fracture efficiency and stress concentration phenomenon for microgel-reinforced hydrogels based on double-network principle. Macromolecules 45, 9445–9451 (2012). Doi:10.1021/ma301933x
ADS
CAS
CrossRef
Google Scholar
Tsukeshiba, H., Huang, M., Na, Y.-H., et al.: Effect of polymer entanglement on the toughening of double network hydrogels. J. Phys. Chem. B 109, 16304–16309 (2005). Doi:10.1021/jp052419n
CAS
CrossRef
PubMed
Google Scholar
Li, Y., Wang, C., Zhang, W., et al.: Preparation and characterization of PAM/SA tough hydrogels reinforced by IPN technique based on covalent/ionic crosslinking. J. Appl. Polym. Sci. 132, n/a–n/a (2015). Doi:10.1002/app.41342
Google Scholar
Draget, K.I., Strand, B., Hartmann, M., et al.: Ionic and acid gel formation of epimerised alginates; the effect of AlgE4. Int. J. Biol. Macromol. 27, 117–122 (2000)
CAS
CrossRef
PubMed
Google Scholar
LeRoux, M.A., Guilak, F., Setton, L.A.: Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J. Biomed. Mater. Res. 47, 46–53 (1999). Doi:10.1002/(SICI)1097-4636(199910)47:1<46:AID-JBM6>3.0.CO;2-N
CAS
CrossRef
PubMed
Google Scholar
Madihally, S.V., Matthew, H.W.T.: Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133–1142 (1999). Doi:10.1016/S0142-9612(99)00011-3
CAS
CrossRef
PubMed
Google Scholar
Lee, J.W., Kim, S.Y., Kim, S.S., et al.: Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J. Appl. Polym. Sci. 73, 113–120 (1999). Doi:10.1002/(SICI)1097-4628(19990705)73:1<113:AID-APP13>3.0.CO;2-D
CAS
CrossRef
Google Scholar
Li, C., Allen, J., Alliston, T., Pruitt, L.A.: The use of polyacrylamide gels for mechanical calibration of cartilage—a combined nanoindentation and unconfined compression study. J. Mech. Behav. Biomed. Mater. 4, 1540–1547 (2011). Doi:10.1016/j.jmbbm.2011.02.004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Peyton, S.R., Kim, P.D., Ghajar, C.M., et al.: The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29, 2597–2607 (2008). Doi:10.1016/j.biomaterials.2008.02.005
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Peyton, S.R., Raub, C.B., Keschrumrus, V.P., Putnam, A.J.: The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27, 4881–4893 (2006). Doi:10.1016/j.biomaterials.2006.05.012
CAS
CrossRef
PubMed
Google Scholar
Jirapinyo, P., Kumar, N., Thompson, C.C.: Validation of an endoscopic part-task training box as a skill assessment tool. Gastrointest. Endosc. 81, 967–973 (2015). Doi:10.1016/j.gie.2014.08.007
CrossRef
PubMed
Google Scholar
Botden, S.M.B.I., Goossens, R., Jakimowicz, J.J.: Developing a realistic model for the training of the laparoscopic Nissen fundoplication. Simul. Healthc. J. Soc. Simul. Healthc. 5, 173–178 (2010). Doi:10.1097/SIH.0b013e3181cd09bb
CrossRef
Google Scholar
Mattei, T.A., Frank, C., Bailey, J., et al.: Design of a synthetic simulator for pediatric lumbar spine pathologies: laboratory investigation. J. Neurosurg. Pediatr. 12, 192–201 (2013). Doi:10.3171/2013.4.PEDS12540
CrossRef
PubMed
Google Scholar
Suzuki, M., Ogawa, Y., Kawano, A., et al.: Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol. (Stockh) 124, 400–402 (2004). Doi:10.1080/00016480410016478
CrossRef
Google Scholar
Oliveira, M., Sooraj Hussain, N., Dias, A.G., et al.: 3-D biomodelling technology for maxillofacial reconstruction. Mater. Sci. Eng. C 28, 1347–1351 (2008). Doi:10.1016/j.msec.2008.02.007
CAS
CrossRef
Google Scholar
Varga, S., Smith, J., Minneti, M., et al.: Central venous catheterization using a perfused human cadaveric model: application to surgical education. J. Surg. Educ. 72, 28–32 (2015). Doi:10.1016/j.jsurg.2014.07.005
CrossRef
PubMed
Google Scholar
Ohta, M., Handa, A., Iwata, H., et al.: Poly-vinyl alcohol hydrogel vascular models for in vitro aneurysm simulations: the key to low friction surfaces. Technol. Health Care 12, 225–233 (2004)
PubMed
Google Scholar
Kosukegawa, H., Mamada, K., Kuroki, K., et al.: Measurements of dynamic viscoelasticity of poly (vinyl alcohol) hydrogel for the development of blood vessel biomodeling. J. Fluid Sci. Technol. 3, 533–543 (2008). Doi:10.1299/jfst.3.533
CrossRef
Google Scholar
Takashima, K., Tsuzuki, S., Ooike, A., et al.: Numerical analysis and experimental observation of guidewire motion in a blood vessel model. Med. Eng. Phys. 36, 1672–1683 (2014). Doi:10.1016/j.medengphy.2014.09.012
CrossRef
PubMed
Google Scholar
Brewin, M., Greenwald, S., Shaw, S., et al.: Characterisation of agarose gel as a tissue mimic material (TMM) for use in an anthropomorphic test object investigating the acoustic localization of coronary stenosis. J. Biomech. 45, S139 (2012). Doi:10.1016/S0021-9290(12)70140-9
CrossRef
Google Scholar
Shiraishi, I., Yamagishi, M., Hamaoka, K., et al.: Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardiothorac. Surg. (2009). Doi:10.1016/j.ejcts.2009.07.046
Google Scholar
Schmitt, K.-U., Walti, M., Schälli, O., et al.: Development of a model to mimic pleural space mechanics. Technol. Health Care 21, 369–378 (2013). Doi:10.3233/THC-130737
PubMed
Google Scholar
Thompson, C., Jirapinyo, P., Kumar, N., et al.: Development and initial validation of an endoscopic part-task training box. Endoscopy 46, 735–744 (2014). Doi:10.1055/s-0034-1365463
CrossRef
PubMed
PubMed Central
Google Scholar
Bakarich, S.E., in het Panhuis, M., Beirne, S., et al.: Extrusion printing of ionic–covalent entanglement hydrogels with high toughness. J. Mater. Chem. B 1, 4939 (2013). Doi:10.1039/c3tb21159b
CAS
CrossRef
Google Scholar
Hong, S., Sycks, D., Chan, H.F., et al.: 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015). Doi:10.1002/adma.201501099
CAS
CrossRef
PubMed
PubMed Central
Google Scholar