Modeling Skeletal Injuries in Military Scenarios

Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 19)


In this chapter, a review of the current state-of-the-art in techniques, efforts and ideas in the area of modeling skeletal injuries in military scenarios is provided. The review includes detailed discussions of the head, neck, spine, upper and lower extremity body regions. Each section begins with a description of the injury taxonomy reported for military scenarios for a particular body region and then a review of the computational modeling follows. In addition, a brief classification of modeling methods, tools and codes typically employed is provided and the processes and strategies for validation of models are discussed. Finally, we conclude with a short list of recommendations and observations for future work in this area. In summary, much work has been completed, however, there remains much to do in this research area. With continued efforts, modeling and simulation will continue to provide insight and understanding into the progression and time course of skeletal injuries in military scenarios with a high degree of spatial and temporal resolution. However, more work is needed to improve mechanistic-based modeling of injury mechanisms, such as fracture, and increase the inclusion of bio-variability into simulation frameworks.


Computational biomechanics Blast injuries Skeletal injuries Military injuries Injury Finite element modeling 


  1. 1.
    Eastridge, B.J., Costanzo, G., Jenkins, D., Spott, M.A., Wade, C., Greydanus, D., Flaherty, S., Rappold, J., Dunne, J., Holcomb, J.B., Blackbourne, L.H.: Impact of joint theater trauma system initiatives on battlefield injury outcomes. Am. J. Surg. 198(6), 852–857 (2009). doi: 10.1016/j.amjsurg.2009.04.029. URL Google Scholar
  2. 2.
    Hawley, C.A., de Burgh, H.T., Russell, R.J., Mead, A.: Traumatic brain injury recorded in the UK joint theatre trauma registry among the UK armed forces. J. Head Trauma Rehabil. 30(1), E47–E56 (2015). doi: 10.1097/HTR.0000000000000023. URL Google Scholar
  3. 3.
    US Army Research Institute of Environmental Medicine (USARIEM) TAIHOD: The total army injury and health outcomes database. Accessed 14 May 2015
  4. 4.
    Jones, B.H., Cowan, D.N., Tomlinson, J.P. Robinson, J.R., Polly, D.W., Frykman, P.N.: Epidemiology of injuries associated with physical training among young men in the army. Med. Sci. Sports Exer. 25(2), 197 (1993)Google Scholar
  5. 5.
    Kaufman, K.R., Brodine, S., Shaffer, R.: Military training-related injuries: surveillance, research, and prevention. Am. J. Prev. Med. 18(3), 54–63 (2000)Google Scholar
  6. 6.
    Knapik, J., Ang, P., Reynolds, K., Jones, B.: Physical fitness, age, and injury incidence in infantry soldiers. J. Occup. Environ. Med. 35(6), 598–603 (1993)CrossRefGoogle Scholar
  7. 7.
    Hauret, K.G., Jones, B.H., Bullock, S.H., Canham-Chervak, M., Canada, S.: Musculoskeletal injuries: description of an under-recognized injury problem among military personnel. Am. J. Prev. Med. 38(1), S61–S70 (2010). doi: 10.1016/j.amepre.2009.10.021. URL Google Scholar
  8. 8.
    Ramasamy, A., Hill, A.M., Masouros, S., Gibb, I., Bull, A.M.J., Clasper, J.C.: Blast-related fracture patterns: a forensic biomechanical approach. J. R. Soc. Interface 8(58), 689–698 (2011). doi: 10.1098/rsif.2010.0476. URL Google Scholar
  9. 9.
    Leggieri, M.J., Jr.: United States Department of Defense Blast Injury Research Program. URL Accessed 09 Oct 2015
  10. 10.
    Covey, D.C.: Blast and fragment injuries of the musculoskeletal system. J. Bone Joint Surg. 84, 1221–1234 (2002)Google Scholar
  11. 11.
    Yeh, D.D., Schecter, W.P.: Primary blast injuries an updated concise review. World J. Surg. 36(5), 966–972 (2012)Google Scholar
  12. 12.
    Christopher, J.J.: U.Va-CAB underbody blast overview and WIA-Man research. In: Wright Patterson Air Force Base S.A.F.E. Luncheon. University of Virginia Center for Applied Biomechanics, Dayton, OH (2012). URL
  13. 13.
    Kosinski, R.J.: A literature review on reaction time. Clemson University (2008). URL
  14. 14.
    Denefeld, V., Heider, N., Holzwarth, A., Sttler, A., Salk, M.: Reduction of global effects on vehicles after IED detonations. Defence Technol. 10(2), 219–225 (2014). doi: 10.1016/j.dt.2014.05.005. URL Google Scholar
  15. 15.
    Hale, R.G., Hayes, D.K., Orloff, G., Peterson, K., Powers, D.B., Mahadevan, S.: Maxillofacial and neck trauma. Technical report, United States Army Medical Department (2012). URL
  16. 16.
    Schoenfeld, A.J., Laughlin, M.D., McCriskin, B.J., Bader, J.O., Waterman, P.H., Jr., Belmont, B.R.: Spinal injuries in United States military personnel deployed to Iraq and Afghanistan: an epidemiological investigation involving 7877 combat casualties from 2005 to 2009. Spine 38(20), 1770–1778 (2013). doi: 10.1097/BRS.0b013e31829ef226. URL Google Scholar
  17. 17.
    Zachar, M.R., Kittle, C.P., Brown-Baer, P., Hale, R.G., Chan, R.K.: Characterization of mandibular fractures incurred from battle injuries in Iraq and Afghanistan from 2001–2010. J. Oral Maxillofac. Surg. 71(4):734–742 (2013). doi: 10.1016/j.joms.2012.10.030. URL Google Scholar
  18. 18.
    Breeze, J., Gibbons, A.J., Hunt, N.C., Monaghan, A.M., Gibb, I., Hepper, A., Midwinter, M.: Mandibular fractures in british military personnel secondary to blast trauma sustained in Iraq and Afghanistan. Br. J. Oral Maxillofac. Surg. 49(8), 607–611 (2011). doi: 10.1016/j.bjoms.2010.10.006. URL Google Scholar
  19. 19.
    Lei, T., Xie, L., Wenbing, T., Chen, Y., Tang, Z., Tan, Y.: Blast injuries to the human mandible: development of a finite element model and a preliminary finite element analysis. Injury 43(11), 1850–1855 (2012)CrossRefGoogle Scholar
  20. 20.
    Aare, M., Kleiven, S.: Evaluation of head response to ballistic helmet impacts using the finite element method. Int. J. Impact Eng. 34(3), 596–608 (2007)CrossRefGoogle Scholar
  21. 21.
    Yang, J., Dai, J.: Simulation-based assessment of rear effect to ballistic helmet impact. Comput. Aided Des. Appl. 7(1), 59–73 (2010)Google Scholar
  22. 22.
    Tan, L.B., Tse, K.M. Lee, H.P., Tan, V.B.C., Lim, S.P.: Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: experiments and finite element simulations. Int. J. Impact Eng. 50, 99–112 (2012)Google Scholar
  23. 23.
    Pintar, F.A., Philippens, M.M.G.M., Zhang, J., Yo-ganandan, N.: Methodology to determine skull bone and brain responses from ballistic helmet-to-head contact loading using experiments and finite element analysis. Med. Eng. Phys. 35(11), 1682–1687 (2013)Google Scholar
  24. 24.
    Grujicic, M., Bell, W.C., Pandurangan, B., Glomski, P.S.: Fluid/structure interaction computational investigation of blast-wave mitigation efficacy of the advanced combat helmet. J. Mater. Eng. Perform. 20(6), 877–893 (2011)CrossRefGoogle Scholar
  25. 25.
    Grujicic, M., Arakere, A., Pandurangan, B., Grujicic, A., Littlestone, A., Barsoum, R.: Computational investigation of shock-mitigation efficacy of polyurea when used in a combat helmet: a core sample analysis. Multidiscip. Model. Mater. Struct. 8(3), 297–331 (2012)Google Scholar
  26. 26.
    Zhang, L., Makwana, R., Sharma, S.: Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet. Front. Neurol. 4 (2013)Google Scholar
  27. 27.
    Przekwas, A., Tan, X.G., Chen, Z.J., Zhou, X., Reeves, D., Wilkerson, P., Yang, H.Q., Harrand, V., Chancey, V.C.: Computational modeling of helmet structural dynamics during blunt impacts. In: ASME 2009 International Mechanical Engineering Congress and Exposition, pp. 447–449. American Society of Mechanical Engineers (2009)Google Scholar
  28. 28.
    Ganpule, S., Gu, L., Alai, A., Chandra, N.: Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput. Methods Biomech. Biomed. Eng. 15(11), 1233–1244 (2012)Google Scholar
  29. 29.
    Li, Y.Q., Li, X.G., Gao, X.L.: Modeling of advanced combat helmet under ballistic impact. J. Appl. Mech. (2015)Google Scholar
  30. 30.
    Zhang, T.G., Satapathy, S.S.: Effect of helmet pads on the load transfer to head under blast loadings. In: ASME 2014 International Mechanical Engineering Congress and Exposition, pp. V003T03A005–V003T03A005. American Society of Mechanical Engineers (2014)Google Scholar
  31. 31.
    Loyd, A.M., Van Ee, C., Panzer, M.B., Myers, B.S., Bass, C.R.: Skull biomechanics. Orthop. Biomech. 121 (2012)Google Scholar
  32. 32.
    Livermore Software Technology Corporation. Ls-dyna (2012). URL
  33. 33.
    Moss, W.C., King, M.J., Blackman, E.G.: Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys. Rev. Lett. 103(10), 108702 (2009)Google Scholar
  34. 34.
    Tang, Z., Tu, W., Zhang, G., Lei, T., Tan, Y.: Dynamic simulation and preliminary finite element analysis of gunshot wounds to the human mandible. Injury 43(5), 660–665 (2012). doi: 10.1016/j.injury.2011.03.012. URL Google Scholar
  35. 35.
    Lei, T., Xie, L., Tu, W., Chen, Y., Tan, Y.: Development of a finite element model for blast injuries to the pig mandible and a preliminary biomechanical analysis. J. Trauma Acute Care Surg. 73(4), 902–907 (2012). doi: 10.1097/TA.0b013e3182515cb1. URL Google Scholar
  36. 36.
    Latham, F.: A study in body ballistics: seat ejection. In: Proceedings of the Royal Society of London. Series B, Biological Sciences, vol. 147, pp. 121–139. Harrison and Sons, London (1957)Google Scholar
  37. 37.
    Dimnet, J.: Biomechanical models of the head-neck system (Chapter 21). In: Berthoz, A., Graf, W., Vidal, P.P. (eds.) The head-neck sensory motor system. Oxford University Press Inc., New York (1992)Google Scholar
  38. 38.
    Thacker, B.H., Kumaresan, D.P., Kumaresan, S., Yoganandan, N., Pintar, F.A.: Probabilistic finite element analysis of the human lower cervical spine. Math. Model. Sci. Comput. 13, 12–21 (2001)Google Scholar
  39. 39.
    Fagan, M.J., Julian, S., Mohsen, A.M.: Finite element analysis in spine research. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 216(5), 281–298 (2002)CrossRefGoogle Scholar
  40. 40.
    Liu, Y.K.: Towards a stress criterion of injury—an example in caudocephalad acceleration. J. Biomech. 2, 145–149 (1969)CrossRefGoogle Scholar
  41. 41.
    Toth, R.: Multiplying degree of freedom, non-linear spinal model. In: Proceedings of the 19th Annual Conference on Engineering in Medicine and Biology, p. 8 (1966)Google Scholar
  42. 42.
    Orne, D., Liu, Y.K.: A mathematical model of spinal response to impact. J. Biomech. 4, 49–71 (1971)CrossRefGoogle Scholar
  43. 43.
    Prasad, P., King, A.I.: An experimentally validated dynamic model of the spine. J. Appl. Mech. 41, 546–550 (1974)CrossRefGoogle Scholar
  44. 44.
    Belytschko, T., Schwer, L., Privitzer, E.: Theory and application of a three-dimensional model of the human spine. Aviat. Space Environ. Med. 49, 158–165 (1978)Google Scholar
  45. 45.
    Williams, J.L., Belytschko, T.B.: A three-dimensional model of the human cervical spine for impact simulation. J. Biomech. Eng. 105, 321–331 (1983)CrossRefGoogle Scholar
  46. 46.
    Kraft, R.H., Wozniak, S.L.: A review of computational spinal injury biomechanics research and recommendations for future efforts. Technical report, U.S. Army Research Laboratory (2011). URL
  47. 47.
    Wilcox, R.K.: The influence of material property and morphological parameters on specimen-specific finite element models of porcine vertebral bodies. J. Biomech. 40(3), 669–673 (2007)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Lu, M.Y., Hutton, W.C., Gharpuary, V.M.: Can variations in intervertebral disc height affect the mechanical function of the disc? Spine 21(19), 2208–2216 (1996)CrossRefGoogle Scholar
  49. 49.
    Maurel, N., Lavaste, F., Skalli, W.: A three-dimensional parameterized finite element model of the lower cervical spine. Study of the influence of the posterior articular facets. J. Biomech. 30(9), 921–931 (1997)CrossRefGoogle Scholar
  50. 50.
    Yeni, Y.N., Christopherson, G.T., Dong, X.N., Kim, D.-G., Fyhrie, D.P.: Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone. J. Biomech. Eng. 127, 1–8 (2005)CrossRefGoogle Scholar
  51. 51.
    Bredbenner, T.L., Eliason, T.D., Fracis, L., McFarland, J.M., Merkle, A.C., Nicolella, D.P.: Development and validation of a statistical shape modeling-based finite element model of the cervical spine under low-level multiple direction loading conditions. Front. Bioeng. Biotechnol. 2(58), 1770–1778 (2014). doi: 10.3389/fbioe.2014.00058. URL
  52. 52.
    Shender, B.S., Paskoff, G.: Overview of the NAVAIR spinal injury mitigation program. Technical report, NAVAIR Human Systems Department (2005). URL
  53. 53.
    Spurrier, E., Singleton, J.A.G., Masouros, S., Gibb, I., Clasper, J.: Blast injury in the spine: dynamic response index is not an appropriate model for predicting injury. Clin. Orthop. Relat. Res. 1–7 (2015)Google Scholar
  54. 54.
    Zhou, X., Whitley, P., Przekwas, A.: A musculoskeletal fatigue model for prediction of aviator neck maneuvering loadings. Int. J. Hum. Factors Model. Simul. 2 4(3–4), 191–219 (2014)Google Scholar
  55. 55.
    Aggromito, D., Chen, B., Thomson, R., Wang, J., Yan, W.: Effects of body-borne equipment on occupant forces during a simulated helicopter crash. Int. J. Ind. Ergon. 44(4), 561–569 (2014)CrossRefGoogle Scholar
  56. 56.
    Aggromito, D., Thomson, R., Wang, J., Chhor, A., Chen, B., Yan, W.: Effect of body-borne equipment on injury of military pilots and aircrew during a simulated helicopter crash. Int. J. Ind. Ergon. (2015). ISSN 0169-8141, doi: 10.1016/j.ergon.2015.07.001. URL Google Scholar
  57. 57.
    Kulkarni, K.B., Ramalingam, J., Thyagarajan, R.: Assessment of the accuracy of certain reduced order models used in the prediction of occupant injury during under-body blast events. SAE Int. J. Transp. Saf. 2(2), 307–319 (2014)Google Scholar
  58. 58.
    Makwana, A.R., Krishna, A.R., Yuan, H., Kraft, R.H., Zhou, X., Przekwas, A.J., Whitley, P.: Towards a micromechanical model of intervertebral disc degeneration under cyclic loading. In: ASME 2014 International Mechanical Engineering Congress and Exposition, pp. V003T03A012–V003T03A012. American Society of Mechanical Engineers (2014)Google Scholar
  59. 59.
    Wilcox, R.K., Allen, D.J., Hall, R.M., Limb, D., Barton, D.C., Dickson, R.A.: A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur. Spine J. 13, 481–488 (2004)CrossRefGoogle Scholar
  60. 60.
    Kumaresan, S., Yoganandan, N., Pintar, F.A.: Finite element analysis of the cervical spine: a material property sensitivity study. Clin. Biomech. 14, 41–53 (1999)CrossRefGoogle Scholar
  61. 61.
    Guan, Y., Yoganandan, N., Zhang, J., Pintar, F.A., Cusick, J.F., Wolfla, C.E., Maiman, D.J.: Validation of a clinical finite element model of the human lumbosacral spine. Med. Biol. Eng. Comput. 44(8), 633–641 (2006)CrossRefGoogle Scholar
  62. 62.
    Williams, J.R., Natarajan, R.N., Andersson, G.B.J.: Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. J. Biomech. 40(9), 1981–1987 (2007)Google Scholar
  63. 63.
    Jones, A.C., Wilcox, R.K.: Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med. Eng. Phys. 30, 1287–1304 (2008)CrossRefGoogle Scholar
  64. 64.
    Goel, V.K., Grauer, J.N., Patel, T.C., Biyani, A., Sairyo, K., Vishnubhotla, S., Matyas, A., Cowgill, I., Shaw, M., Long, R., Dick, D., Panjabi, M.M., Serhan, H.: Effects of charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine 30(24), 2755–2764 (2005)Google Scholar
  65. 65.
    El-Rich, M., Arnoux, P.-J., Wagnac, E., Brunet, C., Aubin, C.-E.: Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J. Biomech. 42, 1252–1262 (2009)CrossRefGoogle Scholar
  66. 66.
    Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., Wilke, H.-J.: Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 22, 377384 (2007)Google Scholar
  67. 67.
    Tschirhart, C.E., Nagpurkar, A., Whyne, C.M.: Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J. Biomech. 37(5), 653–660 (2004)CrossRefGoogle Scholar
  68. 68.
    Pitzen, T., Geisler, F.H., Matthis, D., Muller-Storz, H., Pedersen, K., Steudel, W.-I.: The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment. Eur. Spine J. 10(1), 23–29 (2001)CrossRefGoogle Scholar
  69. 69.
    Shim, V.P.W., Liu, J.F., Lee, V.S.: A technique for dynamic tensile testing of human cervical spine ligaments. Exp. Mech. 46, 77–89 (2006)CrossRefGoogle Scholar
  70. 70.
    Kim, H.-J., Chun, H.-J., Kang, K.-T., Lee, H.-M., Kim, H.-S., Moon, E.-S., Park, J.-O., Hwang, B.-H., Son, J.-H., Moon, S.-H.: A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis. Med. Biol. Eng. Comput. 47, 599–605 (2009)CrossRefGoogle Scholar
  71. 71.
    Greaves, C.Y., Gadala, M.S., Oxland, T.R.: A three-dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms. Ann. Biomed. Eng. 36(3), 396–405 (2008)CrossRefGoogle Scholar
  72. 72.
    Owens, B.D., Kragh, J.F., Jr. Macaitis, J., Svoboda, S.J., Wenke, J.C.: Characterization of extremity wounds in operation iraqi freedom and operation enduring freedom. J. Orthop. Trauma 21(4) (2007). ISSN 0890-5339, doi: 10.1097/BOT.0b013e31802f78fb Google Scholar
  73. 73.
    Hauret, K.G., Jones, B.H., Bullock, S.H., Canham-Chervak, M., Canada, S.: Musculoskeletal injuries: description of an under-recognized injury problem among military personnel. Am. J. Prev. Med. 38(1) (2010). doi: 10.1016/j.amepre.2009.10.021 Google Scholar
  74. 74.
    Krueger, C.A., Wenke, M.S. Cho, J.C., Hsu, J.R.: Common factors and outcome in late upper extremity amputations after military injury. J. Orthop. Trauma 28(4) (2014). ISSN 0890-5339, doi: 10.1097/BOT.0b013e3182a665f5 Google Scholar
  75. 75.
    Palaniappan, P., Jr., Wipasuramonton, P., Tanavde, A.S. Zhu, F.: A three-dimensional finite element model of the human arm. SAE Technical Paper Series. SAE International (1999). URL
  76. 76.
    van Rooij, L., Bours R., van Hoof, J., Mihm, J.J., Ridella, S.A., Bass, C.R., Crandall, J.R.: The development, validation and application of a finite element upper extremity model subjected to air bag loading. Stapp Car Crash J. 47, 55–78 (2003)Google Scholar
  77. 77.
    Thollon, L., Behr, M., Cavallero, C., Brunet. P.C.: Finite element modelling and simulation of upper limb with radioss. Int. J. Crashworthiness 7(3), 269–284 (2008). URL
  78. 78.
    Gayzik, F.S., Moreno, D.P., Vavalle, N.A., Rhyne, A.C., Stitzel, J.D.: Development of the global human body models consortium mid-sized male full body model. In: Injury Biomechanics Research (2011). URL
  79. 79.
    Gayzik, F.S., Moreno, D.P., Geer, C.P., Wuertzer, S.D., Martin, R.S., Stitzel, J.D.: Development of a full body cad dataset for computational modeling: a multi-modality approach. Ann. Biomed. Eng. 39(10), 2568–2583 (2011). URL Google Scholar
  80. 80.
    Engineering Systems International (ESI) Group: Altair® RADIOSS® Software (2015). URL www.esi-groupcom/software-services/virtual-performance/virtual-performance-solution. Accessed 09 Oct 2015
  81. 81.
    TASS International: Altair® RADIOSS® Software (2015). URL Accessed 09 Oct 2015
  82. 82.
    Wang. J.T.: Phase II plan & status of the global human body models consortium. In: 2014 Government and Industry Meeting. General Motors, Washington, DC (2014). URL
  83. 83.
    Ramasamy, A., Masouros, S., Newell, N., Hill, A.M., Proud, W.G., Brown, K.A., Bull, A.M.J., Clasper, J.C.: In-vehicle extremity injuries from improvised explosive devices: current and future foci. Philos. Trans. R. Soc. 366(1562), 160–170 (2011). doi: 10.1098/rstb.2010.0219. URL Google Scholar
  84. 84.
    McKay, B.J., Bir, C.A.: Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events. Stapp Car Crash J. 53, 229–249 (2009). URL
  85. 85.
    Pintar, F.A.: Biomedical analyses, tolerance, and mitigation of acute and chronic trauma. Technical report, DTIC Document (2012)Google Scholar
  86. 86.
    Untaroiu, C.D., Yue, N., Shin, J.: A finite element model of the lower limb for simulating automotive impacts. Ann. Biomed. Eng. 41(3), 513–526 (2012). URL Google Scholar
  87. 87.
    Untaroiu, C., Shin, j.: Biomechanical and injury response of human foot and ankle under complex loading. J. Biomech. Eng. 135, 1–8 (2013). ISSN 1528-8951, doi: 10.1115/1.4025108. URL Google Scholar
  88. 88.
    Untaroiu, C., Darvish, K., Crandall, J., Deng, B., Wang, J.T.: A finite element model of the lower limb for simulating pedestrian impacts. Stapp Car Crash J. 49, 157–181 (2005). ISSN 1532-8546Google Scholar
  89. 89.
    Gabler, L.F., Panzer, M.B., Salzar, R.S.: HighRate mechanical properties of human heel pad for simulation of a blast loading condition. In IRC-14–87 IRCOBI Conference (2014). URL
  90. 90.
    Fielding, R.A., Kraft, R.H., Przekwas, A., Tan, X.G.: Development of a lower extremity model for high strain rate impact loading. Int. J. Exp. Comput. Biomech. 3(2), 161–186 (2015)Google Scholar
  91. 91.
    Suresh, M., Zhu, F.: Finite element evaluation of human body response to vertical impulse loading (2012). URL
  92. 92.
    Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi, T., Okubo, K.: BodyParts3D: 3D structure database for anatomical concepts. Nucleic Acids Res. 37, D782–D785 (2009). ISSN 1362-4962, doi: 10.1093/nar/gkn613 Google Scholar
  93. 93.
    Nilakantan, G., Tabiei, A.: Computational assessment of occupant injury caused by mine blasts underneath infantry vehicles. Int. J. Veh. Struct. Syst. 1, 50–58 (2009). ISSN 09753060, doi: 10.4273/ijvss.1.1-3.07
  94. 94.
    LSTC: LS-DYNA keyword user’s manual volume II (2015). URL
  95. 95.
    Majumder, S., Roychowdhury, A., Pal, S.: Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body. Med. Eng. Phys. 29(10), 1167–1178 (2007). ISSN 1350-4533, doi: 10.1016/j.medengphy.2006.11.001. URL Google Scholar
  96. 96.
    Lee, S.H., Sifakis, E., Terzopoulos, D.: Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28(4), 1–17 (2009). ISSN 07300301, doi: 10.1145/1559755.1559756. URL Google Scholar
  97. 97.
    Hendriks, F.M., Brokken, D., van Eemeren, J.T.W.M., Oomens, C.W.J., Baaijens, F.P.T., Horsten, J.B.A.M.: A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res. Technol. 9(3), 274–283 (2003). ISSN 0909-752X, doi: 10.1034/j.1600-0846.2003.00019.x. URL Google Scholar
  98. 98.
    Lapeer, R.J., Gasson, P.D., Karri, V.: A hyperelastic finite-element model of human skin for interactive real-time surgical simulation. IEEE Trans. Biomed. Eng. 58(4), 1013–22 (2011). ISSN 1558-2531, doi: 10.1109/TBME.2009.2038364. URL Google Scholar
  99. 99.
    Cox, S.L., Mithraratne, K., Smith, N.P.: An anatomically based finite element model of the lower limbs in the seated posture. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Conference, pp. 6327–6330 (2007). ISSN 1557-170X, doi: 10.1109/IEMBS.2007.4353802
  100. 100.
    Guo, Q., Zhou, Y., Wang, X., She, L., Wei, R.: Numerical simulations and experimental analysis of a vehicle cabin and its occupants subjected to a mine blast. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 0954407015591098 (2015)Google Scholar
  101. 101.
    Fielding, R.A., Kraft, R.H., Tan, X.G., Przekwas, A.J., Kozuch, C.D.: High rate impact to the human calcaneus: a micromechanical analysis. In: ASME 2014 International Mechanical Engineering Congress and Exposition, pp. V003T03A009-V003T03A009. American Society of Mechanical Engineers (2014)Google Scholar
  102. 102.
    Humanetics Innovative Solutions. Hybrid III 50th Male Dummy, 2015. URL Accessed 09 Oct 2015
  103. 103.
    Qiu, T.X. Teo, E.C. Yan, Y.B., Lei, W.: Finite element modeling of a 3D coupled foot-boot model. Med. Eng. Phys. 33, 1228–1233 (2011). ISSN 13504533, doi: 10.1016/j.medengphy.2011.05.012 Google Scholar
  104. 104.
    Song, J.H., Wang, H., Belytschko, T.: A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008). ISSN 0178-7675, doi: 10.1007/s00466-007-0210-x Google Scholar
  105. 105.
    Kraft, R.H., Lynch, M.L., Vogel, E.W. III.: Computational failure modeling of lower extremities. In: NATO HFM-207 Symposium. U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland (2012). ARL-RP-346. URL
  106. 106.
    Gordon, C.C., Churchill, T., Clauser, C.E., Bradtmiller, B., McConville, J.T.: Anthropometric survey of us army personnel: methods and summary statistics 1988. Technical report, DTIC Document (1989)Google Scholar
  107. 107.
    Military Handbook: Anthropometry of U.S. military personnel. department of defense document no. Technical report, DOD-HDBK-743A. Released 13 Feb 1991Google Scholar
  108. 108.
    Abdel-Malek, K., Arora, J., Yang, J., Marler, T., Beck, S., Swan, C., Frey-Law, L., Kim, J., Bhatt, R., Mathai, A., et al.: A physics-based digital human model. Int. J. Veh. Des. 51(3–4), 324–340 (2009)CrossRefGoogle Scholar
  109. 109.
    Marler, T., Arora, J., Beck, S., Lu, J., Mathai, A., Patrick, A., Swan, C.: Computational approaches in DHM. In: Handbook of Digital Human Modeling for Human Factors and Ergonomics, vol. 160. Taylor and Francis Press, London (2008)Google Scholar
  110. 110.
    Marler, T., Beck, S., Verma, U., Johnson, R., Roemig, V., Dariush, B.: A digital human model for performance-based design. In: Digital Human Modeling. Applications in Health, Safety, Ergonomics and Risk Management, pp. 136–147. Springer, Heidelberg (2014)Google Scholar
  111. 111.
    Marler, T., Frey-Law, L., Mathai, A., Spurrier, K., Avin, K., Cole, E.: Integration of strength models with optimization-based posture prediction. Adv. Appl. Hum. Model. Simul. 327 (2012)Google Scholar
  112. 112.
    Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction: one step formulation. Int. J. Numer. Methods Eng. 79(6), 667–695 (2009)Google Scholar
  113. 113.
    Xiang, Y., Chung, H.J., Kim, J.H., Bhatt, R., Rahmatalla, S., Yang, J., Marler, T., Arora, J.S., Abdel-Malek, K.: Predictive dynamics: an optimization-based novel approach for human motion simulation. Struct. Multi. Optim. 41(3), 465–479 (2010)Google Scholar
  114. 114.
    Frey Law, L., Xia, T. Laake, A.: Modeling human physical capability: joint strength and range of motion (2009)Google Scholar
  115. 115.
    Frey-Law, L.A., Laake, A., Avin, K.G., Heitsman, J., Marler, T., Abdel-Malek, K., et al.: Knee and elbow 3d strength surfaces: peak torque-angle-velocity relationships. J. Appl. Biomech. 28(6), 726–737 (2012)Google Scholar
  116. 116.
    Martins, M.L., Ferreira, S.C., Vilela, M.J.: Multiscale models for biological systems. Curr. Opin. Colloid Interface Sci. 15(1), 18–23 (2010)CrossRefGoogle Scholar
  117. 117.
    Cacciagrano, D.R., Corradini, F., Merelli, E., Tesei, L.: Multiscale bone remodelling with spatial p systems. In: Proceedings Compendium of the 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010), pp. 69–83 (2010)Google Scholar
  118. 118.
    Ward, R.C., Pouchard, L.C., Munro, N.B., Fischer, S.K.: Virtual human problem-solving environments. In: Digital Human Modeling, pp. 108–132. Springer, Heidelberg (2008)Google Scholar
  119. 119.
    Fazekas, C., Kozmann, G., Hangos, K.M.: Multiscale modeling and time-scale analysis of a human limb. Multiscale Model. Simul. 6(3), 761–791 (2007)Google Scholar
  120. 120.
    Przekwas, A.: Multiscale computational modeling of lung blast injuries. In: Explosion and Blast-Related Injuries: Effects of Explosion and Blast from Military Operations and Acts of Terrorism, p. 163 (2010)Google Scholar
  121. 121.
    Tan, X.G., Przekwas, A.J., Rule, G., Iyer, K., Ott, K., Merkle, A.: Modeling articulated human body dynamics under a representative blast loading. In: ASME 2011 International Mechanical Engineering Congress and Exposition, pp. 71–78. American Society of Mechanical Engineers (2011)Google Scholar
  122. 122.
    Tan, X.G., Przekwas, A.J.: A computational model for articulated human body dynamics. Int. J. Hum. Factors Model. Simul. 2(1–2), 85–110 (2011)Google Scholar
  123. 123.
    Gupta, R.K., Przekwas, A.: Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front. Neurol. 4 (2013)Google Scholar
  124. 124.
    Spitzer, V., Ackerman, M.J., Scherzinger, A.L., Whit-lock, D.: The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3(2), 118–130 (1996)Google Scholar
  125. 125.
    Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui M.W.B.: 4D xcat phantom for multimodality imaging research. Med. Phys. 37(9), 4902–4915 (2010)Google Scholar
  126. 126.
    Gordon, C.C., Walker, R.A., Tebbetts, I., McConville, J.T., Bradtmiller, B., Clauser, C.E., Churchill, T.: Anthropometric survey of us army personnel-methods and summary statistics. Final report. Technical Report AD-A225 094, DTIC Document, Sept 1989Google Scholar
  127. 127.
    SAE International: Civilian American and European surface anthropometry resource project CAESAR, 2015. URL Accessed 09 Oct 2015
  128. 128.
    Tan, X.G., Przekwas, A.J., Gupta, R.K.: A fast running model for skeletal impact biomechanics analysis. In: ASME 2015 International Mechanical Engineering Congress and Exposition, page accepted. American Society of Mechanical Engineers (2015)Google Scholar
  129. 129.
    Saraf, H., Ramesh, K.T., Lennon, A.M., Merkle, A.C., Roberts, J.C.: Mechanical properties of soft human tissues under dynamic loading. J. Biomech. 40(9), 1960–1967 (2007). doi: 10.1016/j.jbiomech.2006.09.021. URL Google Scholar
  130. 130.
    Pervin, F., Chen, W., Weerasooriya, T.: Dynamic compressive response of bovine liver tissue. J. Mech. Behav. Biomed. Mater. 4(1), 76–84 (2011). doi: 10.1016/j.jmbbm.2010.09.007. URL Google Scholar
  131. 131.
    Pilcher, A., Wang, X., Kaltz, Z., Garrison, J.G., Niebur, G.L., Mason, J., Song, B., Cheng, M., Chen, W.: High strain rate testing of bovine trebecular bone. J. Biomed. Eng. 132(8), 081012–081019 (2010). doi: 10.1115/1.4000086. URL Google Scholar
  132. 132.
    Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: Febio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012)Google Scholar
  133. 133.
    Sundaramurthy, A., Alai, A., Ganpule, S., Holmberg, A., Plougonven, E., Chandra, N.: Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model. J. Neurotrauma 29(13), 2352–2364 (2012)CrossRefGoogle Scholar
  134. 134.
    Abdel-Malek, K., Yang, J., Kim, J.H., Marler, T., Beck, S., Swan, C., Frey-Law, L., Mathai, A., Murphy, C., Rahmatallah, S., et al.: Development of the virtual-human santostm. In: Digital Human Modeling, pp. 490–499. Springer, Heidelberg (2007)Google Scholar
  135. 135.
    Helton, T., Algoso, A., Cogar, J.: Hypervelocity benchmarking for velodyne. Bull. Am. Phys. Soc. 60 (2015)Google Scholar
  136. 136.
    Shirley, A., et al.: Velodyne user’s manual. Corvid Technologies, Mooresville, NC (2014)Google Scholar
  137. 137.
    Stowe, D., Kupchella, R., Cogar, John: Improved artificial viscosity in finite element method (FEM) for hypervelocity impact calculations. Proc. Eng. 103, 593–600 (2015)CrossRefGoogle Scholar
  138. 138.
    Grosland, N.M., Shivanna, K.H., Magnotta, V.A., Kallemeyn, N.A., DeVries, N.A., Tadepalli, S.C., Lisle, C.: IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Comput. Methods Programs Biomed. 94(1), 96–107 (2009)Google Scholar
  139. 139.
    Ionescu, I., Weiss, J.A., Guilkey, J., Cole, M., Kirby, R.M., Berzins, M.: Ballistic injury simulation using the material point method. Stud. Health Technol. Inf. 119, 228–233 (2006)Google Scholar
  140. 140.
    Berzins, M., Schmidt, J., Meng, Q., Humphrey, A.: Past, present and future scalability of the uintah software. In: Proceedings of the Extreme Scaling Workshop, p. 6. University of Illinois at Urbana-Champaign (2012)Google Scholar
  141. 141.
    Stewart, J.R., Edwards, H.C.: A framework approach for developing parallel adaptive multiphysics applications. Finite Elem. Anal. Des. 40(12), 1599–1617 (2004)CrossRefGoogle Scholar
  142. 142.
    Dagro, A.M., McKee, P.J., Kraft, R.H., Zhang, T.G., Satapathy, S.S.:. A preliminary investigation of traumatically induced axonal injury in a three-dimensional (3-D) finite element model (FEM) of the human head during blast-loading. Technical Report ARL-TR-6504, DTIC Document, July 2013Google Scholar
  143. 143.
    Taylor, P., Ford, C.: Simulation of early-time head impact leading to traumatic brain injury. International NeuroTrauma Letter of the International Brain Injury Association (2007)
  144. 144.
    Taylor, P.A., Ford, C.C.: Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J. Biomech. Eng. 131(6), 061007 (2009)CrossRefGoogle Scholar
  145. 145.
    Taylor, P.A., Ludwigsen, J.S., Ford, C.C.: Investigation of blast-induced traumatic brain injury. Brain Inj. 28(7), 879–895 (2014)CrossRefGoogle Scholar
  146. 146.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  147. 147.
    Moss, W.C., King, M.J., Blackman, E.G.: Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys. Rev. Lett. 103(10), 108702 (2009). doi: 10.1103/PhysRevLett.103.108702 CrossRefGoogle Scholar
  148. 148.
    TASS International: MADYMO software. URL Accessed 09 Oct 2015
  149. 149.
    Anderson, A.E., Ellis, B.J., Weiss, J.A.: Verification, validation and sensitivity studies in computational biomechanics. Comput. Methods Biomech. Biomed. Eng. 10(3), 171–184 (2007)CrossRefGoogle Scholar
  150. 150.
    Henderson, K.A., Bailey, A.M., Cristopher, J.J., Brozoski, F., Salzar, R.S.: Biomechanical response of the lower leg under high rate loading. In: IRCOBI Conference (2013). URL
  151. 151.
    Funk, J.R., Tourret, L.J., George, S.E., Crandall, J.R.: The role of axial loading in malleolar fractures. Technical report, SAE Technical Paper (2000). URL
  152. 152.
    Mckay, B.J.: Development of lower extremity injury criteria and biomechanical surrogate to evaluate military vehicle occupant injury during an explosive blast event. Ph.D. thesis, Wayne State University (2010). URL
  153. 153.
    U.S. Department of Transportation National Highway Traffic Safety Administration: THOR 50th male ATD (2015). URL Accessed 09 Oct 2015 (Online)
  154. 154.
    Maneau, J. Keown, M.: Development of an assessment methodology for lower leg injuries resulting from anti-vehicular blast landmines. In: IU-TAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications Solid Mechanics and Its Applications, vol. 124, pp. 33–40. Springer, Netherlands (2005). URL
  155. 155.
    Ruggirello, K.P., Schumacher, S.C.: A comparison of parallelization strategies for the material point method. In: 11th World Congress on Computational Mechanics, pp 20–25 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Nuclear Engineering, The Penn State Computational Biomechanics GroupThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Mechanical and Nuclear Engineering, The Penn State Computational Biomechanics GroupThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.CORVID TechnologiesMooresvilleUSA
  4. 4.Virtual Soldier Research Program, Mechanical and Industrial Engineering, Biomedical EngineeringUniversity of IowaIowa CityUSA
  5. 5.Research and Exploratory Development DepartmentJohns Hopkins University Applied Physics LaboratoryLaurelUSA
  6. 6.CFD Research CorporationNW HuntsvilleUSA

Personalised recommendations