The Mechanophysiololgy of Stress Fractures in Military Recruits

  • Amir Hadid
  • Yoram Epstein
  • Nogah Shabshin
  • Amit Gefen
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 19)


Stress fractures (SFs) are of the most common and potentially serious overuse injuries. Many athletes, naïve exercisers, and military recruits who are engaged in frequent and repetitive activity may suffer a SF; the most common site for SF is the tibia. SF is regarded as fatigue fracture—when training yields bone strains in a range where the micro-damage formation in the bone exceeds the ability of a remodeling process to repair it and ultimately this cumulative tissue damage might result with a spontaneous fracture. The registry of SFs among athletes is incomplete, but in military recruits the incidence of SFs range between 5 and 12 % (female soldiers are 2–10 times more prone to SFs compared to their male counterparts). Recovery from a SF is primarily achieved by halting any load bearing activities and on rest. This might be detrimental to athletes and military recruits, as results in loss of training days and consequently a reduction in physical capacity. The ample risk factors for SFs can be categorized as internal factors depending on the individual (e.g. gender, bone geometry) and external factors (e.g. training volume). It follows that in many cases SFs are preventable. Recruits engaged in a reasonable level of physical activity, especially impact exercise in the years prior to joining the military, and also maintain adequate nutrition, may lower their risk for SFs. Yet, several fundamental issues in regard to SFs are still left unresolved. For example, how muscle forces provide a protective effect against SFs, how many cycles (i.e. steps or strides) can an individual perform before he or she will be at a risk of suffering a SF, or is it necessary to implement prophylactic interventions in order to protect those who are identified at a greater risk? New experimental tools and improved computational modeling frameworks for investigating and better addressing the above questions that are reviewed in this chapter can be used to improve the knowledge on the etiology and prevention of SFs.


Fatigue fractures Overuse Physical activity Biomechanical modeling 


  1. 1.
    Yang, J., Tibbetts, A.S., Covassin, T., Cheng, G., Nayar, S., Heiden, E.: Epidemiology of overuse and acute injuries among competitive collegiate athletes. J. Athl. Train. 47(2), 198–204 (2012)Google Scholar
  2. 2.
    Hreljac, A.: Impact and overuse injuries in runners. Med. Sci. Sports Exerc. 36(5), 845–849 (2004)CrossRefGoogle Scholar
  3. 3.
    Tenforde, A.S., Sayres, L.C., McCurdy, M.L., Collado, H., Sainani, K.L., Fredericson, M.: Overuse injuries in high school runners: lifetime prevalence and prevention strategies. PM&R 3(2), 125–131 (2011). doi: 10.1016/j.pmrj.2010.09.009 CrossRefGoogle Scholar
  4. 4.
    Clarsen, B., Myklebust, G., Bahr, R.: Development and validation of a new method for the registration of overuse injuries in sports injury epidemiology: the Oslo Sports Trauma Research Centre (OSTRC) Overuse Injury Questionnaire. Br. J. Sports Med. 47(8), 495–502 (2013)CrossRefGoogle Scholar
  5. 5.
    Beck, T.J., Ruff, C.B., Shaffer, R.A., Betsinger, K., Trone, D.W., Brodine, S.K.: Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 27(3), 437–444 (2000). S8756-3282(00)00342-2 [pii]CrossRefGoogle Scholar
  6. 6.
    Givon, U., Friedman, E., Reiner, A., Vered, I., Finestone, A., Shemer, J.: Stress fractures in the Israeli defense forces from 1995 to 1996. Clin. Orthop. Relat. Res. 373, 227–232 (2000)CrossRefGoogle Scholar
  7. 7.
    Linenger, J., Shwayhat, A.: Epidemiology of podiatric injuries in US marine recruits undergoing basic training. J. Am. Podiatr. Med. Assoc. 82(5), 269 (1992)CrossRefGoogle Scholar
  8. 8.
    Milgrom, C., Finestone, A., Shlamkovitch, N., Rand, N., Lev, B., Simkin, A., Wiener, M.: Youth is a risk factor for stress fracture. A study of 783 infantry recruits. J. Bone Joint Surg British Volume 76(1), 20–22 (1994)Google Scholar
  9. 9.
    Scully, T., Besterman, G.: Stress fracture—a preventable training injury. Mil. Med. 147(4), 285 (1982)Google Scholar
  10. 10.
    Finestone, A., Milgrom, C.: How stress fracture incidence was lowered in the Israeli army: a 25-yr struggle. Med. Sci. Sports Exerc. 40(11 Suppl), S623–629 (2008). doi: 10.1249/MSS.0b013e3181892dc2 CrossRefGoogle Scholar
  11. 11.
    Armstrong 3rd, D.W., Rue, J.P., Wilckens, J.H., Frassica, F.J.: Stress fracture injury in young military men and women. Bone 35(3), 806–816 (2004). doi:10.1016/j.bone.2004.05.014, S8756328204002194 [pii]Google Scholar
  12. 12.
    Jones, B.H., Bovee, M.W., Harris, J.M., Cowan, D.N.: Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am. J. Med. 21(5), 705–710 (1993)Google Scholar
  13. 13.
    Brudvig, T., Gudger, T., Obermeyer, L.: Stress fractures in 295 trainees: a one-year study of incidence as related to age, sex, and race. Mil. Med. 148(8), 666–667 (1983)Google Scholar
  14. 14.
    Bijur, P.E., Horodyski, M., Egerton, W., Kurzon, M., Lifrak, S., Friedman, S.: Comparison of injury during cadet basic training by gender. Arch. Pediatr. Adolesc. Med. 151(5), 456 (1997)CrossRefGoogle Scholar
  15. 15.
    Jones, B.H., Thacker, S.B., Gilchrist, J., Kimsey Jr, C.D., Sosin, D.M.: Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol. Rev. 24(2), 228–247 (2002)CrossRefGoogle Scholar
  16. 16.
    Moran, D.S., Finestone, A., Arbel, Y., Shabshin, N., Laor, A.: Simplified model to predict stress fracture in young elite combat recruits. J. Strength Cond. Res. (2011). doi: 10.1519/JSC.0b013e31823f2733 Google Scholar
  17. 17.
    Friedl, K.E., Evans, R.K., Moran, D.S.: Stress fracture and military medical readiness: bridging basic and applied research. Med. Sci. Sports Exerc. 40(11 Suppl), S609–622 (2008). doi: 10.1249/MSS.0b013e3181892d53 CrossRefGoogle Scholar
  18. 18.
    Jordaan, G., Schwellnus, M.P.: The incidence of overuse injuries in military recruits during basic military training. Mil. Med. 159(6), 421–426 (1994)Google Scholar
  19. 19.
    Devas, M.: Stress fractures of the tibia in athletes. Children 2(20), 22 (1958)Google Scholar
  20. 20.
    Dobrindt, O., Hoffmeyer, B., Ruf, J., Seidensticker, M., Steffen, I., Fischbach, F., Zarva, A., Wieners, G., Ulrich, G., Lohmann, C.: Estimation of return-to-sports-time for athletes with stress fracture—an approach combining risk level of fracture site with severity based on imaging. BMC Musculoskelet. Disord. 13(1), 139 (2012)CrossRefGoogle Scholar
  21. 21.
    Lee, C.-H., Huang, G.-S., Chao, K.-H., Jean, J.-L., Wu, S.-S.: Surgical treatment of displaced stress fractures of the femoral neck in military recruits: a report of 42 cases. Arch. Orthop. Trauma Surg. 123(10), 527–533 (2003)CrossRefGoogle Scholar
  22. 22.
    Larson, C.M., Traina, S.M., Fischer, D.A., Arendt, E.A.: Recurrent complete proximal tibial stress fracture in a basketball player. Am. J. Sports Med. 33(12), 1914–1917 (2005)CrossRefGoogle Scholar
  23. 23.
    Boden, B.P., Osbahr, D.C.: High-risk stress fractures: evaluation and treatment. J. Am. Acad. Orthop. Surg. 8(6), 344–353 (2000)CrossRefGoogle Scholar
  24. 24.
    Finestone, A.S., Milgrom, C.: Diagnosis and treatment of stress fractures. In: Doral, M.N., Tandoğan, R.N., Mann, G., Verdonk, R. (eds.) Sports Injuries, pp. 775–785. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-15630-4_101
  25. 25.
    Currey, J.D.: Bones: structure and mechanics. Princeton University Press, Princeton (2002)Google Scholar
  26. 26.
    D’Lima, D.D., Fregly, B.J., Patil, S., Steklov, N., Colwell Jr, C.W.: Knee joint forces: prediction, measurement, and significance. Proc. Inst. Mech. Eng. H. 226(2), 95–102 (2012)CrossRefGoogle Scholar
  27. 27.
    Hurwitz, D.E., Sumner, D.R., Andriacchi, T.P., Sugar, D.A.: Dynamic knee loads during gait predict proximal tibial bone distribution. J. Biomech. 31(5), 423–430 (1998). S0021-9290(98)00028-1 [pii]CrossRefGoogle Scholar
  28. 28.
    Taylor, S.J., Walker, P.S., Perry, J.S., Cannon, S.R., Woledge, R.: The forces in the distal femur and the knee during walking and other activities measured by telemetry. J. Arthroplasty 13(4), 428–437 (1998)CrossRefGoogle Scholar
  29. 29.
    Wehner, T., Claes, L., Simon, U.: Internal loads in the human tibia during gait. Clin. Biomech. 24(3), 299–302 (2009). doi: 10.1016/j.clinbiomech.2008.12.007 CrossRefGoogle Scholar
  30. 30.
    Edwards, W.B., Taylor, D., Rudolphi, T.J., Gillette, J.C., Derrick, T.R.: Effects of stride length and running mileage on a probabilistic stress fracture model. Med. Sci. Sports Exerc. 41(12), 2177–2184 (2009). doi: 10.1249/MSS.0b013e3181a984c4 CrossRefGoogle Scholar
  31. 31.
    Burr, D.B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., Hoshaw, S., Saiag, E., Simkin, A.: In vivo measurement of human tibial strains during vigorous activity. Bone 18(5), 405–410 (1996). 8756328296000282 [pii]CrossRefGoogle Scholar
  32. 32.
    Currey, J.: Effects of differences in mineralization on the mechanical properties of bone. Phil. Trans. R. Soc. Lond. B, Biol. Sci. 304(1121), 509–518 (1984)CrossRefGoogle Scholar
  33. 33.
    Prentice, A., Parsons, T.J., Cole, T.J.: Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am. J. Clin. Nutr. 60(6), 837–842 (1994)Google Scholar
  34. 34.
    Milgrom, C., Giladi, M., Simkin, A., Rand, N., Kedem, R., Kashtan, H., Stein, M.: An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin. Orthop. Relat. Res. 231, 216–221 (1988)Google Scholar
  35. 35.
    Milgrom, C., Giladi, M., Simkin, A., Rand, N., Kedem, R., Kashtan, H., Stein, M., Gomori, M.: The area moment of inertia of the tibia: a risk factor for stress fractures. J. Biomech. 22(11–12), 1243–1248 (1989)CrossRefGoogle Scholar
  36. 36.
    Giladi, M., Milgrom, C., Simkin, A., Stein, M., Kashtan, H., Margulies, J., Rand, N., Chisin, R., Steinberg, R., Aharonson, Z., et al.: Stress fractures and tibial bone width. A risk factor. J. Bone Joint Surg. Br. 69(2), 326–329 (1987)Google Scholar
  37. 37.
    Giladi, M., Milgrom, C., Simkin, A., Danon, Y.: Stress fractures. Identifiable risk factors. Am. J. Sports Med. 19(6), 647–652 (1991)CrossRefGoogle Scholar
  38. 38.
    Schnackenburg, K.E., Macdonald, H.M., Ferber, R., Wiley, J.P., Boyd, S.K.: Bone quality and muscle strength in female athletes with lower limb stress fractures. Med. Sci. Sports Exerc. 43(11), 2110–2119 (2011). doi: 10.1249/MSS.0b013e31821f8634 CrossRefGoogle Scholar
  39. 39.
    Jepsen, K.J., Centi, A., Duarte, G.F., Galloway, K., Goldman, H., Hampson, N., Lappe, J.M., Cullen, D.M., Greeves, J., Izard, R., Nindl, B.C., Kraemer, W.J., Negus, C.H., Evans, R.K.: Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults. J. Bone Miner. Res. 26(12), 2872–2885 (2011). doi: 10.1002/jbmr.497 CrossRefGoogle Scholar
  40. 40.
    Jepsen, K.J., Evans, R., Negus, C.H., Gagnier, J.J., Centi, A., Erlich, T., Hadid, A., Yanovich, R., Moran, D.S.: Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits. J. Bone Miner. Res. 28(6), 1290–1300 (2013). doi: 10.1002/jbmr.1879 CrossRefGoogle Scholar
  41. 41.
    Frost, H.M.: A brief review for orthopedic surgeons: Fatigue damage (microdamage) in bone (its determinants and clinical implications). J. Orthop. Sci. 3(5), 272–281 (1998). doi: 10.1007/s007760050053 CrossRefGoogle Scholar
  42. 42.
    Martin, R.B.: Toward a unifying theory of bone remodeling. Bone 26(1), 1–6 (2000). doi: 10.1016/S8756-3282(99)00241-0 CrossRefGoogle Scholar
  43. 43.
    Frost, H.: Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat. Rec. 226(4), 403–413 (1990)CrossRefGoogle Scholar
  44. 44.
    Jee, W., Frost, H.: Skeletal adaptations during growth. Triangle; Sandoz J. Med. Sci. 31(2/3), 77 (1992)Google Scholar
  45. 45.
    Warden, S.J., Burr, D.B., Brukner, P.D.: Stress fractures: pathophysiology, epidemiology, and risk factors. Curr. Osteoporos. Rep. 4(3), 103–109 (2006)CrossRefGoogle Scholar
  46. 46.
    Zioupos, P., Currey, J.D., Casinos, A.: Tensile fatigue in bone: are cycles-, or time to failure, or both, important? J. Theor. Biol. 210(3), 389–399 (2001). doi: 10.1006/jtbi.2001.2316 CrossRefGoogle Scholar
  47. 47.
    Schaffler, M.B., Radin, E.L., Burr, D.B.: Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10(3), 207–214 (1989). doi: 10.1016/8756-3282(89)90055-0 CrossRefGoogle Scholar
  48. 48.
    Zadpoor, A.A., Nikooyan, A.A.: The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clin. Biomech. 26(1), 23–28 (2011). doi: 10.1016/j.clinbiomech.2010.08.005 CrossRefGoogle Scholar
  49. 49.
    Fredericson, M., Bergman, A.G., Hoffman, K.L., Dillingham, M.S.: Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am. J. Sports Med. 23(4), 472–481 (1995)CrossRefGoogle Scholar
  50. 50.
    Daffner, R.H., Pavlov, H.: Stress fractures: current concepts. AJR Am. J. Roentgenol. 159(2), 245–252 (1992)CrossRefGoogle Scholar
  51. 51.
    Devas, M.: Stress fractures in athletes. J. R. Coll. Gen. Pract. 19(90), 34 (1970)Google Scholar
  52. 52.
    Zwas, S.T., Elkanovitch, R., Frank, G.: Interpretation and classification of bone scintigraphic findings in stress fractures. J. Nucl. Med. 28(4), 452–457 (1987)Google Scholar
  53. 53.
    Lin, E.C.: Radiation risk from medical imaging. Mayo Clin. Proc. 85(12), 1142–1146 (2010). doi: 10.4065/mcp.2010.0260 CrossRefGoogle Scholar
  54. 54.
    Batt, M.E., Ugalde, V., Anderson, M.W., Shelton, D.K.: A prospective controlled study of diagnostic imaging for acute shin splints. Med. Sci. Sports Exerc. 30(11), 1564–1571 (1998)CrossRefGoogle Scholar
  55. 55.
    Kiuru, M.J., Pihlajamaki, H.K., Hietanen, H.J., Ahovuo, J.A.: MR imaging, bone scintigraphy, and radiography in bone stress injuries of the pelvis and the lower extremity. Acta Radiol. 43(2), 207–212 (2002). ard430222 [pii]CrossRefGoogle Scholar
  56. 56.
    Hadid, A., Moran, D.S., Evans, R.K., Fuks, Y., Schweitzer, M.E., Shabshin, N.: Tibial stress changes in new combat recruits for special forces: patterns and timing at MR imaging. Radiology 273(2), 483–490 (2014)CrossRefGoogle Scholar
  57. 57.
    Visuri, T., Hietaniemi, K.: Displaced stress fracture of the femoral shaft: a report of three cases. Mil. Med. 157(6), 325–327 (1992)Google Scholar
  58. 58.
    Visuri, T., Vara, A., Meurman, K.O.: Displaced stress fractures of the femoral neck in young male adults: a report of twelve operative cases. J. Trauma Acute Care Surg. 28(11), 1562–1569 (1988)CrossRefGoogle Scholar
  59. 59.
    Patel, D.R.: Stress fractures: diagnosis and management in the primary care setting. Pediatr. Clin. North Am. 57(3), 819–827 (2010). doi: 10.1016/j.pcl.2010.03.004. S0031-3955(10)00069-6 [pii]CrossRefGoogle Scholar
  60. 60.
    Milgrom, C., Giladi, M., Stein, M., Kashtan, H., Margulies, J.Y., Chisin, R., Steinberg, R., Aharonson, Z.: Stress fractures in military recruits. A prospective study showing an unusually high incidence. J. Bone Joint Surg. Br. 67(5), 732–735 (1985)Google Scholar
  61. 61.
    Bennell, K.L., Malcolm, S.A., Thomas, S.A., Wark, J.D., Brukner, P.D.: The incidence and distribution of stress fractures in competitive track and field athletes. Am. J. Sports Med. 24(2), 211–217 (1996). doi: 10.1177/036354659602400217 CrossRefGoogle Scholar
  62. 62.
    Kadel, N.J., Teitz, C.C., Kronmal, R.A.: Stress fractures in ballet dancers. Am. J. Sports Med. 20(4), 445–449 (1992)CrossRefGoogle Scholar
  63. 63.
    Warren, M.P., Gunn, J.B., Hamilton, L.H., Warren, L.F., Hamilton, W.G.: Scoliosis and fractures in young ballet dancers. N. Engl. J. Med. 314(21), 1348–1353 (1986)CrossRefGoogle Scholar
  64. 64.
    Dixon, M., Fricker, P.: Injuries to elite gymnasts over 10 yr. Med. Sci. Sports Exerc. 25(12), 1322–1328 (1993)CrossRefGoogle Scholar
  65. 65.
    Pećina, M., Bojanić, I., Dubravčić, S.: Stress fractures in figure skaters. Am. J. Sports Med. 18(3), 277–279 (1990)CrossRefGoogle Scholar
  66. 66.
    Snyder, R.A., Koester, M.C., Dunn, W.R.: Epidemiology of stress fractures. Clin. Sports Med. 25(1), 37–52 (2006)CrossRefGoogle Scholar
  67. 67.
    Milgrom, C., Giladi, M., Chisin, R., Dizian, R.: The long-term followup of soldiers with stress fractures. Am. J. Sports Med. 13(6), 398–400 (1985)CrossRefGoogle Scholar
  68. 68.
    Rauh, M.J., Macera, C.A., Trone, D.W., Shaffer, R.A., Brodine, S.K.: Epidemiology of stress fracture and lower-extremity overuse injury in female recruits. Med. Sci. Sports Exerc. 38(9):1571–1577 (2006). doi: 10.1249/01.mss.0000227543.51293.9d
  69. 69.
    Hallel, T., Amit, S., Segal, D.: Fatigue fractures of tibial and femoral shaft in soldiers. Clin. Orthop. Relat. Res. 118, 35–43 (1976)Google Scholar
  70. 70.
    Khosla, S., Melton III, L.J., Atkinson, E.J., O’fallon, W.: Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J. Clin. Endocrinol. Metab. 86(8), 3555–3561 (2001)CrossRefGoogle Scholar
  71. 71.
    Szulc, P., Munoz, F., Claustrat, B., Garnero, P., Marchand, F., Duboeuf, F., Delmas, P.: Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study 1. J. Clin. Endocrinol. Metab. 86(1), 192–199 (2001)Google Scholar
  72. 72.
    Falahati-Nini, A., Riggs, B.L., Atkinson, E.J., O’Fallon, W.M., Eastell, R., Khosla, S.: Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Investig. 106(12), 1553 (2000)CrossRefGoogle Scholar
  73. 73.
    Riggs, B.L., Khosla, S., Melton, L.J.: A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13(5), 763–773 (1998)CrossRefGoogle Scholar
  74. 74.
    Seeman, E.: Pathogenesis of bone fragility in women and men. Lancet 359(9320), 1841–1850 (2002). doi: 10.1016/S0140-6736(02)08706-8 CrossRefGoogle Scholar
  75. 75.
    Bennell, K.L., Malcolm, S.A., Thomas, S.A., Ebeling, P.R., McCrory, P.R., Wark, J.D., Brukner, P.D.: Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis. Clin. J. Sport Med. 5(4), 229–235 (1995)CrossRefGoogle Scholar
  76. 76.
    Barrow, G.W., Saha, S.: Menstrual irregularity and stress fractures in collegiate female distance runners. Am. J. Sports Med. 16(3), 209–216 (1988)CrossRefGoogle Scholar
  77. 77.
    Jones, B., Cowan, D., Tomlinson, J., Robinson, J., Polly, D., Frykman, P.: Epidemiology of injuries associated with physical training among young men in the army. Med. Sci. Sports Exerc. 25(2), 197 (1993)CrossRefGoogle Scholar
  78. 78.
    Shaffer, R.A., Brodine, S.K., Almeida, S.A., Williams, K.M., Ronaghy, S.: Use of simple measures of physical activity to predict stress fractures in young men undergoing a rigorous physical training program. Am. J. Epidemiol. 149(3), 236–242 (1999)CrossRefGoogle Scholar
  79. 79.
    Milgrom, C., Simkin, A., Eldad, A., Nyska, M., Finestone, A.: Using bone’s adaptation ability to lower the incidence of stress fractures. Am. J. Sports Med. 28(2), 245–251 (2000)Google Scholar
  80. 80.
    Gardner Jr, L.I., Dziados, J.E., Jones, B.H., Brundage, J.F., Harris, J.M., Sullivan, R., Gill, P.: Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole. Am. J. Public Health 78(12), 1563–1567 (1988)CrossRefGoogle Scholar
  81. 81.
    Brunet, M.E., Cook, S.D., Brinker, M., Dickinson, J.: A survey of running injuries in 1505 competitive and recreational runners. J. Sports Med. Phys Fit. 30(3), 307–315 (1990)Google Scholar
  82. 82.
    Cowan, D.N., Jones, B.H., Frykman, P.N., Polly Jr, D.W., Harman, E.A., Rosenstein, R.M., Rosenstein, M.T.: Lower limb morphology and risk of overuse injury among male infantry trainees. Med. Sci. Sports Exerc. 28(8), 945–952 (1996)CrossRefGoogle Scholar
  83. 83.
    Finestone, A., Shlamkovitch, N., Eldad, A., Wosk, J., Laor, A., Danon, Y.L., Milgrom, C.: Risk factors for stress fractures among Israeli infantry recruits. Mil. Med. 156(10), 528–530 (1991)Google Scholar
  84. 84.
    Simkin, A., Leichter, I., Giladi, M., Stein, M., Milgrom, C.: Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle Int. 10(1), 25–29 (1989)CrossRefGoogle Scholar
  85. 85.
    Lappe, J.M., Stegman, M.R., Recker, R.R.: The impact of lifestyle factors on stress fractures in female Army recruits. Osteoporos. Int. 12(1), 35–42 (2001)CrossRefGoogle Scholar
  86. 86.
    Lappe, J., Cullen, D., Haynatzki, G., Recker, R., Ahlf, R., Thompson, K.: Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J. Bone Miner. Res. 23(5), 741–749 (2008). doi: 10.1359/jbmr.080102 CrossRefGoogle Scholar
  87. 87.
    Altarac, M., Gardner, J.W., Popovich. R.M., Potter. R., Knapik, J.J., Jones, B.H.: Cigarette smoking and exercise-related injuries among young men and women. Am. J. Prevent. Med. 18(3, Supplement 1), 96–102 (2000). doi: 10.1016/S0749-3797(99)00166-X
  88. 88.
    Bray, R.M., Marsden, M.E., Peterson, M.R.: Standardized comparisons of the use of alcohol, drugs, and cigarettes among military personnel and civilians. Am. J. Public Health 81(7), 865–869 (1991). doi: 10.2105/AJPH.81.7.865 CrossRefGoogle Scholar
  89. 89.
    Slemenda, C.W., Christian, J.C., Reed, T., Reister, T.K., Williams, C.J., Johnston, C.C.: Long-term bone loss in men: effects of genetic and environmental factors. Ann. Intern. Med. 117(4), 286–291 (1992)CrossRefGoogle Scholar
  90. 90.
    Giladi, M., Milgrom, C., Danon, Y., Aharonson, Z.: The correlation between cumulative march training and stress fractures in soldiers. Mil. Med. 150(11), 600–601 (1985)Google Scholar
  91. 91.
    Mann, G., Constantini, N., Nyska, M., Dolev, E., Barchilon, V., Shabat, S., Finsterbush, A., Mei-Da, O., Hetsroni, I.: Stress fractures: overview. In: Doral, M.N., Tandoğan R.N., Mann, G., Verdonk, R. (eds.) Sports Injuries: Prevention, Diagnosis, Treatment and Rehabilitation. Springer, Heidelberg (2012)Google Scholar
  92. 92.
    Gillespie, L.D., Robertson, M.C., Gillespie, W.J., Lamb, S.E., Gates, S., Cumming, R.G., Rowe, B.H.: Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2(CD007146) (2009)Google Scholar
  93. 93.
    Finestone, A., Giladi, M., Elad, H., Salmon, A., Mendelson, S., Eldad, A., Milgrom, C.: Prevention of stress fractures using custom biomechanical shoe orthoses. Clin. Orthop. Relat. Res. 360, 182–190 (1999)CrossRefGoogle Scholar
  94. 94.
    Brunet, M.E., Cook, S.D., Brinker, M.R., Dickinson, J.A.: A survey of running injuries in 1505 competitive and recreational runners. J. Sports Med. Phys. Fit. 30(3), 307–315 (1990)Google Scholar
  95. 95.
    Milgrom, C., Finestone, A., Segev, S., Olin, C., Arndt, T., Ekenman, I.: Are overground or treadmill runners more likely to sustain tibial stress fracture? Br. J. Sports Med. 37(2), 160–163 (2003)CrossRefGoogle Scholar
  96. 96.
    Corbeil, P., Blouin, J.-S., Bégin, F., Nougier, V., Teasdale, N.: Perturbation of the postural control system induced by muscular fatigue. Gait Posture 18(2), 92–100 (2003). doi: 10.1016/S0966-6362(02)00198-4 CrossRefGoogle Scholar
  97. 97.
    Arndt, A., Ekenman, I., Westblad, P., Lundberg, A.: Effects of fatigue and load variation on metatarsal deformation measured in vivo during barefoot walking. J. Biomech. 35(5), 621–628 (2002). doi: 10.1016/S0021-9290(01)00241-X CrossRefGoogle Scholar
  98. 98.
    Bisiaux, M., Moretto, P.: The effects of fatigue on plantar pressure distribution in walking. Gait Posture 28(4), 693–698 (2008). doi: 10.1016/j.gaitpost.2008.05.009 CrossRefGoogle Scholar
  99. 99.
    Gefen, A.: Biomechanical analysis of fatigue-related foot injury mechanisms in athletes and recruits during intensive marching. Med. Biol. Eng. Comput. 40(3), 302–310 (2002). doi: 10.1007/BF02344212 CrossRefGoogle Scholar
  100. 100.
    Mizrahi, J., Verbitsky, O., Isakov, E.: Fatigue-related loading imbalance on the shank in running: a possible factor in stress fractures. Ann. Biomed. Eng. 28(4), 463–469 (2000). doi: 10.1114/1.284 CrossRefGoogle Scholar
  101. 101.
    Milgrom, C., Radeva-Petrova, D.R., Finestone, A., Nyska, M., Mendelson, S., Benjuya, N., Simkin, A., Burr, D.: The effect of muscle fatigue on in vivo tibial strains. J. Biomech. 40(4), 845–850 (2007). doi: 10.1016/j.jbiomech.2006.03.006 CrossRefGoogle Scholar
  102. 102.
    Knapik, J.J., Harman, E.A., Steelman, R.A., Graham, B.S.: A systematic review of the effects of physical training on load carriage performance. J. Strength Cond. Res. 26(2), 585–597 (2012). doi: 10.1519/JSC.1510b1013e3182429853 CrossRefGoogle Scholar
  103. 103.
    Rome, K., Handoll, H.H., Ashford, R.L.: Interventions for Preventing and Treating Stress Fractures and Stress Reactions of Bone of the Lower Limbs in Young Adults. The Cochrane Library (2005)Google Scholar
  104. 104.
    Schwellnus, M.P., Jordaan, G.: Does calcium supplementation prevent bone stress injuries? A clinical trial. Int. J. Sport Nutr. 2(2), 165–174 (1992)Google Scholar
  105. 105.
    Warden, S.J., Hurst, J.A., Sanders, M.S., Turner, C.H., Burr, D.B., Li, J.: Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J. Bone Miner. Res. 20(5), 809–816 (2005). doi: 10.1359/jbmr.041222 CrossRefGoogle Scholar
  106. 106.
    Seeman, E.: An exercise in geometry. J. Bone Miner. Res. 17(3), 373–380 (2002). doi: 10.1359/jbmr.2002.17.3.373 CrossRefGoogle Scholar
  107. 107.
    Meyer, U., Romann, M., Zahner, L., Schindler, C., Puder, J.J., Kraenzlin, M., Rizzoli, R., Kriemler, S.: Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone 48(4), 792–797 (2011). doi: 10.1016/j.bone.2010.11.018 CrossRefGoogle Scholar
  108. 108.
    Lorentzon, M., Mellström, D., Ohlsson, C.: Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study. J. Bone Miner. Res. 20(11), 1936–1943 (2005). doi: 10.1359/JBMR.050709 CrossRefGoogle Scholar
  109. 109.
    Iuliano-Burns, S., Stone, J., Hopper, J., Seeman, E.: Diet and exercise during growth have site-specific skeletal effects: a co-twin control study. Osteoporos. Int. 16(10), 1225–1232 (2005). doi: 10.1007/s00198-004-1830-z CrossRefGoogle Scholar
  110. 110.
    Julián-Almárcegui, C., Gómez-Cabello, A., Huybrechts, I., González-Agüero, A., Kaufman, J.M., Casajús, J.A., Vicente-Rodríguez, G. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: a systematic review 73(3) (2015). doi: 10.1093/nutrit/nuu065
  111. 111.
    Lanyon, L.E., Hampson, W.G., Goodship, A.E., Shah, J.S.: Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand. 46(2), 256–268 (1975)CrossRefGoogle Scholar
  112. 112.
    Stern-Perry, M., Gefen, A., Shabshin, N., Epstein, Y.: Experimentally tested computer modeling of stress fractures in rats. J. Appl. Physiol. 110(4), 909–916 (2011). doi: 10.1152/japplphysiol.01468.2010. [pii]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Amir Hadid
    • 1
  • Yoram Epstein
    • 2
  • Nogah Shabshin
    • 3
  • Amit Gefen
    • 1
  1. 1.Department of Biomedical EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Heller Institute of Medical Research, Sheba Medical CenterTel AvivIsrael
  3. 3.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations