Biomechanics of Load Carriage

  • Joseph F. Seay
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 19)


Loads carried by the Warfighter have increased substantially throughout recorded history, with the typical U.S. ground Soldier carrying external loads averaging 45 kg during recent conflicts. Carrying heavy loads is one potential source of injury that has been researched from a performance and epidemiological perspective. This chapter focuses on the biomechanics of military load carriage, primarily focusing on lower extremity joint stresses and potential overuse injury mechanisms that may be associated with carrying a load. Studies into the biomechanics of load carriage have documented motion-related differences such as increased step rate, decreased stride length, and more trunk lean with increases in pack-borne loads. Ground reaction forces have been found to increase proportionately with loads up to 40 kg. However, there is a paucity of literature on the relationship between load carriage and biomechanical mechanisms of overuse injury. Findings of recent studies will be presented which add mechanistic information to increased stresses on the lower extremity. Efforts to model injury mechanisms require continued biomechanical measurements in humans while carrying occupationally-relevant loads in order to be validated. In addition to lab-based biomechanics data needed to further explore the mechanistic relationship between load magnitude and injury, technologies should be exploited to accurately quantify stresses related to load carriage the field.


Ground Reaction Force Joint Moment Overuse Injury Load Carriage Vertical Ground Reaction Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Dr. Rebecca Fellin, Dr. William Santee, Mr. Shane Sauer and Dr. Stephen Muza for their helpful comments on this chapter. Disclaimer: The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or reflecting the views of the Army or the Department of Defense. Approved for public release: distribution is unlimited.


  1. 1.
    Dean, C.: The Modern Warrior’s Combat Load—Dismounted Operations in Afghanistan. U.S. Army Center for Army Lessons Learned, Task Force Devil Combined Arms Assessment Team (2003)Google Scholar
  2. 2.
    U.S. Department of the Army: Foot Marches (Field Manual 21–18). Department of the Army, Washington, D.C. (1990)Google Scholar
  3. 3.
    Haisman, M.F.: Determinants of load carrying ability. Appl. Ergon. 19(2), 111–121 (1988). 000368708890004X [pii]CrossRefGoogle Scholar
  4. 4.
    Renbourn, E.T.: The Knapsack and the pack: part 3. J. R. Army Med. Corps 100(3), 193–200 (1954)Google Scholar
  5. 5.
    Knapik, J., Ang, P., Meiselman, H., Johnson, W., Kirk, J., Bensel, C., Hanlon, W.: Soldier performance and strenuous road marching: influence of load mass and load distribution. Mil. Med. 162(1), 62–67 (1997)Google Scholar
  6. 6.
    Johnson, R.F., Knapik, J.J., Merullo, D.J.: Symptoms during load carrying: effects of mass and load distribution during a 20-km road march. Percept. Mot. Skills 81(1), 331–338 (1995)CrossRefGoogle Scholar
  7. 7.
    Bell, N.S., Schwartz, C.E., Harford, T.: The changing profile of disability in the U.S. Army: 1981–2005. Disabil. Health J. 1(1), 14–24 (2008)CrossRefGoogle Scholar
  8. 8.
    Knapik, J.J., Reynolds, K.L., Harman, E.: Soldier load carriage: historical, physiological, biomechanical, and medical aspects. Mil. Med. 169(1), 45–56 (2004)CrossRefGoogle Scholar
  9. 9.
    Tyson, A.S.: Weight of Combat Gear is Taking Toll: The Loads are Contributing to Injuries that are Keeping Some Troops on the Sidelines, p. A03. Washington Post, 1 Feb 2009Google Scholar
  10. 10.
    Crowder, T.A., Beekley, M.D., Sturdivant, R.X., Johnson, C.A., Lumpkin, A.: Metabolic effects of soldier performance on a simulated graded road march while wearing two functionally equivalent military ensembles. Mil. Med. 172(6), 596–602 (2007)CrossRefGoogle Scholar
  11. 11.
    Blacker, S.D., Fallowfield, J.L., Bilzon, J.L.J., Willems, M.E.T.: Neuromuscular function following prolonged load carriage on level and downhill gradients. Aviat. Space Environ. Med. 81(8), 745–753 (2010). doi: 10.3357/asem.2659.2010 CrossRefGoogle Scholar
  12. 12.
    Quesada, P.M., Mengelkoch, L.J., Hale, R.C., Simon, S.R.: Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics 43(3), 293–309 (2000)CrossRefGoogle Scholar
  13. 13.
    Patton, J.F., Kaszuba, J., Mello, R.P., Reynolds, K.L.: Physiological responses to prolonged treadmill walking with external loads. Eur. J. Appl. Physiol. Occup. Physiol. 63(2), 89–93 (1991)CrossRefGoogle Scholar
  14. 14.
    Seay, J.F., Frykman, P.N., Sauer, S.G., Gutekunst, D.J.: Lower extremity mechanics during marching at three different cadences for 60 minutes. J. Appl. Biomech. 30(1), 21–30 (2014). doi: 10.1123/jab.2012-00902012-0090. [pii]CrossRefGoogle Scholar
  15. 15.
    Paolini, G., Della Croce, U., Riley, P.O., Newton, F.K., Casey Kerrigan, D.: Testing of a tri-instrumented-treadmill unit for kinetic analysis of locomotion tasks in static and dynamic loading conditions. Med. Eng. Phys. 29(3), 404–411 (2007). doi: 10.1016/j.medengphy.2006.04.002. S1350-4533(06)00084-1 [pii]CrossRefGoogle Scholar
  16. 16.
    Riley, P.O., Paolini, G., Della Croce, U., Paylo, K.W., Kerrigan, D.C.: A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture 26(1), 17–24 (2007). doi: 10.1016/j.gaitpost.2006.07.003. S0966-6362(06)00145-7 [pii]CrossRefGoogle Scholar
  17. 17.
    Seay, J.F., Fellin, R.E., Sauer, S.G., Frykman, P.N., Bensel, C.K.: Lower extremity biomechanical changes associated with symmetrical torso loading during simulated marching. Mil. Med. 179(1), 85–91 (2014). doi: 10.7205/MILMED-D-13-00090 CrossRefGoogle Scholar
  18. 18.
    Hale, C.J., Coleman, F.R., Karpovich, P.V.: Trunk Inclination in Carrying Low and High Packs of Various Weights (Trans: Division EP). Office of the Quartermaster General, Research and Development Division, Natick, MA (1953)Google Scholar
  19. 19.
    Kinoshita, H.: Effects of different loads and carrying systems on selected biomechanical parameters describing walking gait. Ergonomics 28(9), 1347–1362 (1985)CrossRefGoogle Scholar
  20. 20.
    Martin, P.E., Nelson, R.C.: The effect of carried loads on the walking patterns of men and women. Ergonomics 29(10), 1191–1202 (1986)CrossRefGoogle Scholar
  21. 21.
    Goh, J.H., Thambyah, A., Bose, K.: Effects of varying backpack loads on peak forces in the lumbosacral spine during walking. Clin. Biomech. (Bristol, Avon) 13(1 Suppl 1), S26–S31 (1998). S0268003397000715 [pii]CrossRefGoogle Scholar
  22. 22.
    Harman, E., Han, K., Frykman, P., Pandorf, C.: The effects of backpack weight on the biomechanics of load carriage (Trans: Division MP). Army Technical Report T00-17. U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA (2000)Google Scholar
  23. 23.
    Attwells, R.L., Birrell, S.A., Hooper, R.H., Mansfield, N.J.: Influence of carrying heavy loads on soldiers’ posture, movements and gait. Ergonomics 49(14), 1527–1537 (2006). doi: 10.1080/00140130600757237. L4V8M36925676290 [pii]CrossRefGoogle Scholar
  24. 24.
    Devroey, C., Jonkers, I., De Becker, A., Lenaerts, G., Spaepen, A.: Evaluation of the effect of backpack load and position during standing and walking using biomechanical, physiological and subjective measures. Ergonomics 50(5), 728–742 (2007). doi: 10.1080/00140130701194850 CrossRefGoogle Scholar
  25. 25.
    Majumdar, D., Pal, M.S.: Effects of military load carriage on kinematics of gait. Ergonomics 53(6), 782–791 (2010). doi: 10.1080/00140131003672015. 922480297 [pii]CrossRefGoogle Scholar
  26. 26.
    Polcyn, A.F., Bensel, C.K., Harman, E.A., Obusek, J.P., Pandorf, C.: Effects of Weight Carried by Soldiers: Combined Analysis of Four Studies on Maximal Performance, Physiology, and Biomechanics. U.S. Army Soldier and Biological Chemical Command, Soldier Systems Center, Natick, MA (2002)Google Scholar
  27. 27.
    Singh, T., Koh, M.: Effects of backpack load position on spatiotemporal parameters and trunk forward lean. Gait. Posture 29(1), 49–53 (2009). doi: 10.1016/j.gaitpost.2008.06.006. S0966-6362(08)00157-4 [pii]CrossRefGoogle Scholar
  28. 28.
    Yen, S.C., Ling, W., Magill, R., McDonough, A., Gutierrez, G.M.: Temporal relationship between trunk and thigh contributes to balance control in load carriage walking. Gait. Posture 34(3), 402–408 (2011). doi: 10.1016/j.gaitpost.2011.06.010. S0966-6362(11)00204-9 [pii]CrossRefGoogle Scholar
  29. 29.
    Harman, E., Frykman, P., Pandorf, C., Tharion, W., Mello, R., Obusek, J., Kirk, J.: Physiological, Biomechanical, and Maximal Performance Comparisons of Female Soldiers Carrying Loads Using Prototype U.S. Marine Corps Modular Lightweight Load-Carrying Equipment (MOLLE) with Interceptor Body Armor and U.S. Army All-Purpose Lightweight Individual Carrying Equipment (ALICE) with PASGT Body Armor. U.S. Army Research Institute of Environmental Medicine, Natick, MA (1999)Google Scholar
  30. 30.
    Simpson, K.M., Munro, B.J., Steele, J.R.: Does load position affect gait and subjective responses of females during load carriage? Appl. Ergon. 43(3), 479–485 (2012). doi: 10.1016/j.apergo.2011.07.005. S0003-6870(11)00108-6 [pii]CrossRefGoogle Scholar
  31. 31.
    Ren, L., Jones, R.K., Howard, D.: Dynamic analysis of load carriage biomechanics during level walking. J. Biomech. 38(4), 853–863 (2005)CrossRefGoogle Scholar
  32. 32.
    Gordon, M.J., Goslin, B.R., Graham, T., Hoare, J.: Comparison between load carriage and grade walking on a treadmill. Ergonomics 26(3), 289–298 (1983). doi: 10.1080/00140138308963342 CrossRefGoogle Scholar
  33. 33.
    Knapik, J., Harman, E., Reynolds, K.: Load carriage using packs: a review of physiological, biomechanical and medical aspects. Appl. Ergono. 27(3), 207–216 (1996). 0003687096000130 [pii]CrossRefGoogle Scholar
  34. 34.
    Bobet, J., Norman, R.W.: Effects of load placement on back muscle activity in load carriage. Eur. J. Appl. Physiol. Occup. Physiol. 53(1), 71–75 (1984)CrossRefGoogle Scholar
  35. 35.
    LaFiandra, M., Lynch, S., Frykman, P.N., Harman, E., Ramos, H., Mello, R.: A Comparison of two Commercial Off-the-shelf Backpacks to the Modular Lightweight Load Carrying Equipment (MOLLE) in Biomechanics, Metabolic Cost and Performance. U.S. Army Research Institute of Environmental Medicine, Natick, MA (2003)Google Scholar
  36. 36.
    Qu, X., Yeo, J.C.: Effects of load carriage and fatigue on gait characteristics. J. Biomech. 44(7), 1259–1263 (2011). doi: 10.1016/j.jbiomech.2011.02.016. S0021-9290(11)00108-4 [pii]CrossRefGoogle Scholar
  37. 37.
    Fellin, R.E., Frykman, P.N., Sauer, S.G., Seay, J.F.: Adaptations in Lower Extremity Kinematics due to Vest-borne Military Relevant Loads. In: American Society of Biomechanics, Omaha, NE (2013)Google Scholar
  38. 38.
    Silder, A., Delp, S.L., Besier, T.: Men and women adopt similar walking mechanics and muscle activation patterns during load carriage. J. Biomech. 46(14), 2522–2528 (2013). doi: 10.1016/j.jbiomech.2013.06.020. S0021-9290(13)00294-7 [pii]CrossRefGoogle Scholar
  39. 39.
    Fiolkowski, P., Horodyski, M., Bishop, M., Williams, M., Stylianou, L.: Changes in gait kinematics and posture with the use of a front pack. Ergonomics 49(9), 885–894 (2006). doi: 10.1080/00140130600667444 CrossRefGoogle Scholar
  40. 40.
    Holt, K.G., Wagenaar, R.C., Kubo, M., LaFiandra, M.E., Obusek, J.P.: Modulation of force transmission to the head while carrying a backpack load at different walking speeds. J. Biomech. 38(8), 1621–1628 (2005)CrossRefGoogle Scholar
  41. 41.
    Holt, K.G., Wagenaar, R.C., LaFiandra, M.E., Kubo, M., Obusek, J.P.: Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass. J. Biomech. 36(4), 465–471 (2003)CrossRefGoogle Scholar
  42. 42.
    Caron, R.R., Wagenaar, R.C., Lewis, C.L., Saltzman, E., Holt, K.G.: Center of mass trajectory and orientation to ankle and knee in sagittal plane is maintained with forward lean when backpack load changes during treadmill walking. J. Biomech. 46(1), 70–76 (2013). doi: 10.1016/j.jbiomech.2012.10.004. S0021-9290(12)00579-9 [pii]CrossRefGoogle Scholar
  43. 43.
    Massaad, F., Lejeune, T.M., Detrembleur, C.: The up and down bobbing of human walking: a compromise between muscle work and efficiency. J Physiol 582(Pt 2), 789–799 (2007). doi: 10.1113/jphysiol.2007.127969. jphysiol.2007.127969 [pii]CrossRefGoogle Scholar
  44. 44.
    Ortega, J.D., Farley, C.T.: Minimizing center of mass vertical movement increases metabolic cost in walking. J. Appl. Physiol. 99(6), 2099–2107 (2005). doi: 10.1152/japplphysiol.00103.2005. 00103.2005 [pii]CrossRefGoogle Scholar
  45. 45.
    Hamill, J., Moses, M., Seay, J.: Lower extremity joint stiffness in runners with low back pain. Res. Sports Med. 17(4), 260–273 (2009). doi: 10.1080/15438620903352057917414743. [pii]CrossRefGoogle Scholar
  46. 46.
    Simpson, K.M., Munro, B.J., Steele, J.R.: Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers. Ergonomics 55(3), 316–326 (2012). doi: 10.1080/00140139.2011.642004 CrossRefGoogle Scholar
  47. 47.
    Demur, T., Demura, S.: Relationship among gait parameters while walking with varying loads. J. Physiol. Anthropol. 29(1), 29–34 (2010). JST.JSTAGE/jpa2/29.29 [pii]CrossRefGoogle Scholar
  48. 48.
    Grenier, J.G., Peyrot, N., Castells, J., Oullion, R., Messonnier, L., Morin, J.B.: Energy cost and mechanical work of walking during load carriage in soldiers. Med. Sci. Sports Exerc. 44(6), 1131–1140 (2012). doi: 10.1249/MSS.0b013e3182456057 CrossRefGoogle Scholar
  49. 49.
    Birrell, S.A., Haslam, R.A.: The effect of load distribution within military load carriage systems on the kinetics of human gait. Appl. Ergon. 41(4), 585–590 (2010). doi: 10.1016/j.apergo.2009.12.004. S0003-6870(09)00164-1 [pii]CrossRefGoogle Scholar
  50. 50.
    Birrell, S.A., Hooper, R.H., Haslam, R.A.: The effect of military load carriage on ground reaction forces. Gait. Posture 26(4), 611–614 (2007). doi: 10.1016/j.gaitpost.2006.12.008. S0966-6362(07)00005-7 [pii]CrossRefGoogle Scholar
  51. 51.
    Ghori, G.M., Luckwill, R.G.: Responses of the lower limb to load carrying in walking man. Eur. J. Appl. Physiol. Occup. Physiol. 54(2), 145–150 (1985)CrossRefGoogle Scholar
  52. 52.
    Wiese-Bjornstal, D., Dufek, J.: The effect of weightload and footwear on kinetic and temporal factors in level grade backpacking. J. Hum. Mov. Stud. 21(4), 167–181 (1991)Google Scholar
  53. 53.
    Harman, E., Frykman, P., Pandorf, C., Tharion, W., Mello, R., Obusek, J., Kirk, J.: Physiological, Biomechanical, and Maximal Performance Comparisons of Soldiers Carrying Loads Using U.S. Marine Corps Modular Lightweight Load-Carrying Equipment (MOLLE) and U.S. Army Modular Load System (MLS) Prototypes. U.S. Army Research Institute of Environmental Medicine, Natick, MA (1999)Google Scholar
  54. 54.
    LaFiandra, M., Lynch, S., Frykman, P.N., Haraman, E.A., Ramos, H., Isome, H., Mello, R.: A Comparison of the Scorpion Load Carriage System (SLCS) to the Modular Lightweight Load Carrying Equipment (MOLLE). U.S. Army Research Institute of Environmental Medicine, Natick, MA (2003)Google Scholar
  55. 55.
    Harman, E., Han, K., Frykman, P., Pandorf, C.: The Effects of Walking Speed on the Biomechanics of Backpack Load Carriage. U.S. Army Institute of Environmental Medicine, Natick, MA (2000)Google Scholar
  56. 56.
    Birrell, S.A., Haslam, R.A.: The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics 52(10), 1298–1304 (2009). doi: 10.1080/00140130903003115 CrossRefGoogle Scholar
  57. 57.
    LaFiandra, M., Wagenaar, R.C., Holt, K.G., Obusek, J.: The Effect of Walking Speed and Adding a Backpack on Trunk Dynamics during Treadmill Walking. U.S. Army Research Institute of Environmental Medicine, Natick, MA (2003)Google Scholar
  58. 58.
    Hamill, J., Knutzen, K.M.: Biomechanical Basis of Human Movement, 2nd edn. Lippincott Williams & Williams, Baltimore, MD (2003)Google Scholar
  59. 59.
    Tilbury-Davis, D.C., Hooper, R.H.: The kinetic and kinematic effects of increasing load carriage upon the lower limb. Hum. Mov. Sci. 18(5), 693–700 (1999)CrossRefGoogle Scholar
  60. 60.
    Puthoff, M.L., Darter, B.J., Nielsen, D.H., Yack, H.J.: The effect of weighted vest walking on metabolic responses and ground reaction forces. Med. Sci. Sports Exerc. 38(4), 746–752 (2006). doi: 10.1249/01.mss.0000210198.79705.19 CrossRefGoogle Scholar
  61. 61.
    Lloyd, R., Cooke, C.B.: Kinetic changes associated with load carriage using two rucksack designs. Ergonomics 43(9), 1331–1341 (2000). doi: 10.1080/001401300421770 CrossRefGoogle Scholar
  62. 62.
    Wang, H., Frame, J., Ozimek, E., Leib, D., Dugan, E.L.: Influence of fatigue and load carriage on mechanical loading during walking. Mil. Med. 177(2), 152–156 (2012)CrossRefGoogle Scholar
  63. 63.
    Milner, C.E., Ferber, R., Pollard, C.D., Hamill, J., Davis, I.S.: Biomechanical factors associated with tibial stress fracture in female runners. Med. Sci. Sports Exerc. 38(2), 323–328 (2006). doi: 10.1249/01.mss.0000183477.75808.92. 00005768-200602000-00019 [pii]CrossRefGoogle Scholar
  64. 64.
    Woodard, C.M., James, M.K., Messier, S.P.: Computational methods used in the determination of loading rate: experimental and clinical implications. J. Appl. Biomech. 15(4), 404–417 (1999)Google Scholar
  65. 65.
    Pierrynowsi, M.R., Norman, R.W., Winter, D.A.: Mechanical energy analyses of the human during local carriage on a treadmill. Ergonomics 24(1), 1–14 (1981)CrossRefGoogle Scholar
  66. 66.
    Wang, H., Frame, J., Ozimek, E., Leib, D., Dugan, E.L.: The effects of load carriage and muscle fatigue on lower-extremity joint mechanics. Res. Q. Exerc. Sports 84(3), 305–312 (2013). doi: 10.1080/02701367.2013.814097 CrossRefGoogle Scholar
  67. 67.
    Hill, O.T., Kay, A.B., Wahi, M.M., McKinnon, C.J., Bulathsinhala, L., Haley, T.F.: Rates of knee injury in the U.S. Active Duty Army, 2000–2005. Mil. Med. 177(7), 840–844 (2012)CrossRefGoogle Scholar
  68. 68.
    Hill, O.T., Bulathsinhala, L., Scofield, D.E., Haley, T.F., Bernasek, T.F.: Risk factors for soft tissue knee injuries in active duty U.S. Army Soldiers, 2000–2005. Mil. Med. 178(6), 676–682 (2013)CrossRefGoogle Scholar
  69. 69.
    Cook, T.M., Neumann, D.A.: The effects of load placement on the EMG activity of the low back muscles during load carrying by men and women. Ergonomics 30(10), 1413–1423 (1987). doi: 10.1080/00140138708966035 CrossRefGoogle Scholar
  70. 70.
    Park, H., Branson, D., Kim, S., Warren, A., Jacobson, B., Petrova, A., Peksoz, S., Kamenidis, P.: Effect of armor and carrying load on body balance and leg muscle function. Gait. Posture 39(1), 430–435 (2014). doi: 10.1016/j.gaitpost.2013.08.018. S0966-6362(13)00576-6 [pii]CrossRefGoogle Scholar
  71. 71.
    Pandolf, K.B., Givoni, B., Goldman, R.F.: Predicting energy expenditure with loads while standing or walking very slowly. J. Appl. Physiol. 43(4), 577–581 (1977)Google Scholar
  72. 72.
    Santee, W.R., Small, M.G., Blanchard, L.A.: Application of energy cost algorithms for load carriage to field data. J. Hum. Environ. Syst. 6(2), 69–76 (2003). doi: 10.1618/jhes.6.69 CrossRefGoogle Scholar
  73. 73.
    Goldman, R.F., Iampietro, P.F.: Energy cost of load carriage. J. Appl. Physiol. 17, 675–676 (1962)Google Scholar
  74. 74.
    Beekley, M.D., Alt, J., Buckley, C.M., Duffey, M., Crowder, T.A.: Effects of heavy load carriage during constant-speed, simulated, road marching. Mil. Med. 172(6), 592–595 (2007)CrossRefGoogle Scholar
  75. 75.
    Christie, C.J., Scott, P.A.: Metabolic responses of South African soldiers during simulated marching with 16 combinations of speed and backpack load. Mil. Med. 170(7), 619–622 (2005)CrossRefGoogle Scholar
  76. 76.
    Soule, R.G., Pandolf, K.B., Goldman, R.F.: Energy expenditure of heavy load carriage. Ergonomics 21(5), 373–381 (1978). doi: 10.1080/00140137808931734 CrossRefGoogle Scholar
  77. 77.
    Griffin, T.M., Roberts, T.J., Kram, R.: Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments. J. Appl. Physiol. 95(1), 172–183 (2003). doi: 10.1152/japplphysiol.00944.200295/1/172. [pii]CrossRefGoogle Scholar
  78. 78.
    Lyons, J., Allsopp, A., Bilzon, J.: Influences of body composition upon the relative metabolic and cardiovascular demands of load-carriage. Occup. Med. (Lond.) 55(5), 380–384 (2005). doi: 10.1093/occmed/kqi087. kqi087 [pii]CrossRefGoogle Scholar
  79. 79.
    Haisman, M.F., Goldman, R.F.: Effect of terrain on the energy cost of walking with back loads and handcart loads. J. Appl. Physiol. 36(5), 545–548 (1974)Google Scholar
  80. 80.
    Pandolf, K.B., Haisman, M.F., Goldman, R.F.: Metabolic energy expenditure and terrain coefficients for walking on snow. Ergonomics 19(6), 683–690 (1976). doi: 10.1080/00140137608931583 CrossRefGoogle Scholar
  81. 81.
    Soule, R.G., Goldman, R.F.: Terrain coefficients for energy cost prediction. J. Appl. Physiol. 32(5), 706–708 (1972)Google Scholar
  82. 82.
    Knapik, J., Reynolds, K., Santee, W.R., Friedl, K., Institute, B.: Load Carriage in Military Operations: A Review of Historical, Physiological, Biomechanical, and Medical Aspects. Borden Institute (2010)Google Scholar
  83. 83.
    Epstein, Y., Rosenblum, J., Burstein, R., Sawka, M.N.: External load can alter the energy cost of prolonged exercise. Eur. J. Appl. Physiol. Occup. Physiol. 57(2), 243–247 (1988)CrossRefGoogle Scholar
  84. 84.
    Ricciardi, R., Deuster, P.A., Talbot, L.A.: Effects of gender and body adiposity on physiological responses to physical work while wearing body armor. Mil. Med. 172(7), 743–748 (2007)CrossRefGoogle Scholar
  85. 85.
    Stuempfle, K.J., Drury, D.G., Wilson, A.L.: Effect of load position on physiological and perceptual responses during load carriage with an internal frame backpack. Ergonomics 47(7), 784–789 (2004). doi: 10.1080/0014013042000193264 CrossRefGoogle Scholar
  86. 86.
    Abe, D., Yanagawa, K., Niihata, S.: Effects of load carriage, load position, and walking speed on energy cost of walking. Appl. Ergon. 35(4), 329–335 (2004). doi: 10.1016/j.apergo.2004.03.008. S0003-6870(04)00057-2 [pii]CrossRefGoogle Scholar
  87. 87.
    Jacobson, B.H., Cook, D.A., Altena, T.S., Gemmell, H.A., Hayes, B.M.: Comparison of perceived comfort differences between standard and experimental load carriage systems. Ergonomics 46(10), 1035–1041 (2003). doi: 10.1080/0014013021000045255 CrossRefGoogle Scholar
  88. 88.
    Obusek, J.P., Haraman, E.A., Frykman, P.N., Palmer, C.J., Bills, R.K.: The relationship of backpack center of mass to the metabolic cost of load carriage. Med. Sci. Sports Exerc. 29(5), S205 (1997)CrossRefGoogle Scholar
  89. 89.
    Soule, R.G., Goldman, R.F.: Energy cost of loads carried on the head, hands, or feet. J. Appl. Physiol. 27(5), 687–690 (1969)Google Scholar
  90. 90.
    Legg, S.J., Mahanty, A.: Energy cost of backpacking in heavy boots. Ergonomics 29(3), 433–438 (1986). doi: 10.1080/00140138608968276 CrossRefGoogle Scholar
  91. 91.
    Jones, B.H., Toner, M.M., Daniels, W.L., Knapik, J.J.: The energy cost and heart-rate response of trained and untrained subjects walking and running in shoes and boots. Ergonomics 27(8), 895–902 (1984). doi: 10.1080/00140138408963563 CrossRefGoogle Scholar
  92. 92.
    Martin, P.E.: Mechanical and physiological responses to lower extremity loading during running. Med. Sci. Sports Exerc. 17(4), 427–433 (1985)CrossRefGoogle Scholar
  93. 93.
    Vanderbie, J.H.: Some experimental load distributions studied on the treadmill. Quatermaster Research and Engineering Command, Natick, MA (1953)Google Scholar
  94. 94.
    Lafiandra, M., Harman, E.: The distribution of forces between the upper and lower back during load carriage. Med. Sci. Sports Exerc. 36(3), 460–467 (2004). 00005768-200403000-00015 [pii]CrossRefGoogle Scholar
  95. 95.
    Rohlmann, A., Zander, T., Graichen, F., Schmidt, H., Bergmann, G.: How does the way a weight is carried affect spinal loads? Ergonomics 57(2), 262–270 (2014). doi: 10.1080/00140139.2014.887789 CrossRefGoogle Scholar
  96. 96.
    McGill, S.: Low Back Disorders: Evidence-Based Prevention and Rehabilitation. Human Kinetics (2007)Google Scholar
  97. 97.
    Holding, D.H.: Chapter 6: fatigue. In: Hockey, G.R.J. (ed.) Stress and Fatigue in Human Performance, pp. 145–167. Wiley, Hoboken (1983)Google Scholar
  98. 98.
    The Eastman Kodak Company: Kodak’s Ergonomic Design for People at Work. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  99. 99.
    Astrand, P.O.: Human physical fitness with special reference to sex and age. Physiol. Rev. 36(3), 307–335 (1956)Google Scholar
  100. 100.
    McArdle, W.D., Katch, F.I., Katch, V.L.: Exercise Physiology: Energy, Nutrition, and Human Performance. Lea & Febiger, Philadelphia (1991)Google Scholar
  101. 101.
    Holewijn, M.: Physiological strain due to load carrying. Eur. J. Appl. Physiol. Occup. Physiol. 61(3–4), 237–245 (1990)CrossRefGoogle Scholar
  102. 102.
    Daube, J.R.: Rucksack paralysis. JAMA 208(13), 2447–2452 (1969)CrossRefGoogle Scholar
  103. 103.
    Sharpe, S.R., Holt, K.G., Saltzman, E., Wagenaar, R.C.: Effects of a hip belt on transverse plane trunk coordination and stability during load carriage. J. Biomech. 41(5), 968–976 (2008). doi: 10.1016/j.jbiomech.2007.12.018 CrossRefGoogle Scholar
  104. 104.
    Mackie, H.W., Stevenson, J.M., Reid, S.A., Legg, S.J.: The effect of simulated school load carriage configurations on shoulder strap tension forces and shoulder interface pressure. Appl. Ergon. 36(2), 199–206 (2005). doi: 10.1016/j.apergo.2004.10.007 CrossRefGoogle Scholar
  105. 105.
    Birrell, S.A., Haslam, R.A.: The influence of rifle carriage on the kinetics of human gait. Ergonomics 51(6), 816–826 (2008). doi: 10.1080/00140130701811859 CrossRefGoogle Scholar
  106. 106.
    Seay, J.F., Hasselquist, L., Bensel, C.K.: Carrying a rifle with both hands affects upper body transverse plane kinematics and pelvis-trunk coordination. Ergonomics 54(2), 187–196 (2011). doi: 10.1080/00140139.2010.538726 CrossRefGoogle Scholar
  107. 107.
    Seay, J.F., Van Emmerik, R.E., Hamill, J.: Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin. Biomech. 26(6), 572–578 (2011). doi: 10.1016/j.clinbiomech.2010.11.012. S0268-0033(10)00306-2 [pii]CrossRefGoogle Scholar
  108. 108.
    Hoiberg, A., White, J.F.: Health-status of women in the armed-forces. Armed Forces Soc. 18(4), 514–533 (1992). doi: 10.1177/0095327x9201800405 CrossRefGoogle Scholar
  109. 109.
    Bell, N.S., Mangione, T.W., Hemenway, D., Amoroso, P.J., Jones, B.H.: High injury rates among female army trainees: a function of gender? Am. J. Prev. Med. 18(3 Suppl), 141–146 (2000). S0749379799001737 [pii]CrossRefGoogle Scholar
  110. 110.
    Bell, N.S., Schwartz, C.E., Harford, T.C., Hollander, I.E., Amoroso, P.J.: Temporal changes in the nature of disability: U.S. Army soldiers discharged with disability, 1981–2005. Disabil. Health J. 1(1), 163–171 (2008)CrossRefGoogle Scholar
  111. 111.
    Jones, B.H., Bovee, M.W., Harris 3rd, J.M., Cowan, D.N.: Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am. J. Sports Med. 21(5), 705–710 (1993)CrossRefGoogle Scholar
  112. 112.
    Bijur, P.E., Horodyski, M., Egerton, W., Kurzon, M., Lifrak, S., Friedman, S.: Comparison of injury during cadet basic training by gender. Arch. Pediatr. Adolesc. Med. 151(5), 456–461 (1997)CrossRefGoogle Scholar
  113. 113.
    Yates, B., White, S.: The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am. J. Sports Med. 32(3), 772–780 (2004)CrossRefGoogle Scholar
  114. 114.
    Treloar, A.K., Billing, D.C.: Effect of load carriage on performance of an explosive, anaerobic military task. Mil. Med. 176(9), 1027–1031 (2011)CrossRefGoogle Scholar
  115. 115.
    Birrell, S.A., Hooper, R.H.: Initial subjective load carriage injury data collected with interviews and questionnaires. Mil. Med. 172(3), 306–311 (2007)CrossRefGoogle Scholar
  116. 116.
    Ling, W., Houston, V., Tsai, Y.S., Chui, K., Kirk, J.: Women’s load carriage performance using modular lightweight load-carrying equipment. Mil. Med. 169(11), 914–919 (2004)CrossRefGoogle Scholar
  117. 117.
    Bhambhani, Y., Maikala, R.: Gender differences during treadmill walking with graded loads: biomechanical and physiological comparisons. Eur. J. Appl. Physiol. 81(1–2), 75–83 (2000). doi: 10.1007/PL00013800. 00810075.421 [pii]CrossRefGoogle Scholar
  118. 118.
    Hall, C., Figueroa, A., Fernhall, B., Kanaley, J.A.: Energy expenditure of walking and running: comparison with prediction equations. Med. Sci. Sports Exerc. 36(12), 2128–2134 (2004). 00005768-200412000-00018 [pii]CrossRefGoogle Scholar
  119. 119.
    Browning, R.C., Baker, E.A., Herron, J.A., Kram, R.: Effects of obesity and sex on the energetic cost and preferred speed of walking. J. Appl. Physiol. 100(2), 390–398 (2006). doi: 10.1152/japplphysiol.00767.2005 CrossRefGoogle Scholar
  120. 120.
    Aharony, S., Milgrom, C., Wolf, T., Barzilay, Y., Applbaum, Y.H., Schindel, Y., Finestone, A., Liram, N.: Magnetic resonance imaging showed no signs of overuse or permanent injury to the lumbar sacral spine during a Special Forces training course. Spine J. 8(4), 578–583 (2008). doi: 10.1016/j.spinee.2007.01.001. S1529-9430(07)00007-1 [pii]CrossRefGoogle Scholar
  121. 121.
    Meakin, J.R., Smith, F.W., Gilbert, F.J., Aspden, R.M.: The effect of axial load on the sagittal plane curvature of the upright human spine in vivo. J. Biomech. 41(13), 2850–2854 (2008). doi: 10.1016/j.jbiomech.2008.06.035. S0021-9290(08)00350-3 [pii]CrossRefGoogle Scholar
  122. 122.
    Rodriguez-Soto, A.E., Jaworski, R., Jensen, A., Niederberger, B., Hargens, A.R., Frank, L.R., Kelly, K.R., Ward, S.R.: Effect of load carriage on lumbar spine kinematics. Spine (Phila Pa 1976) 38(13), E783–791 (2013). doi: 10.1097/BRS.0b013e3182913e9f CrossRefGoogle Scholar
  123. 123.
    Krampla, W., Mayrhofer, R., Malcher, J., Kristen, K.H., Urban, M., Hruby, W.: MR imaging of the knee in marathon runners before and after competition. Skeletal Radiol. 30(2), 72–76 (2001)CrossRefGoogle Scholar
  124. 124.
    Kursunoglu-Brahme, S., Schwaighofer, B., Gundry, C., Ho, C., Resnick, D.: Jogging causes acute changes in the knee joint: an MR study in normal volunteers. AJR Am. J. Roentgenol. 154(6), 1233–1235 (1990). doi: 10.2214/ajr.154.6.2110734 CrossRefGoogle Scholar
  125. 125.
    Hamill, J., Haddad, J.M., McDermott, W.J.: Issues in quantifying variability from a dynamical systems perspective. J. Appl. Biomech. 16(4), 407–418 (2000)Google Scholar
  126. 126.
    Heiderscheit, B.C., Hamill, J., van Emmerik, R.E.A.: Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. J. Appl. Biomech. 18(2), 110–121 (2002)Google Scholar
  127. 127.
    Miller, R.H., Meardon, S.A., Derrick, T.R., Gillette, J.C.: Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome. J. Appl. Biomech. 24(3), 262–270 (2008)Google Scholar
  128. 128.
    Selles, R.W., Wagenaar, R.C., Smit, T.H., Wuisman, P.I.: Disorders in trunk rotation during walking in patients with low back pain: a dynamical systems approach. Clin. Biomech. (Bristol, Avon) 16(3), 175–181 (2001)CrossRefGoogle Scholar
  129. 129.
    Seay, J.F., Van Emmerik, R.E., Hamill, J.: Influence of low back pain status on pelvis-trunk coordination during walking and running. Spine (Phila Pa 1976) 36(16), E1070–1079 (2011). doi: 10.1097/BRS.0b013e3182015f7c CrossRefGoogle Scholar
  130. 130.
    LaFiandra, M., Wagenaar, R.C., Holt, K.G., Obusek, J.P.: How do load carriage and walking speed influence trunk coordination and stride parameters? J. Biomech. 36(1), 87–95 (2003)CrossRefGoogle Scholar
  131. 131.
    Hamill, J., van Emmerik, R.E.A., Heiderscheit, B.C., Li, L.: A dynamical systems approach to lower extremity running injuries. Clin. Biomech. 14(5), 297–308 (1999). doi: 10.1016/S0268-0033(98)90092-4 CrossRefGoogle Scholar
  132. 132.
    Arellano, C.J., Layne, C.S., O’Connor, D.P., Scott-Pandorf, M., Kurz, M.J.: Does load carrying influence sagittal plane locomotive stability? Med. Sci. Sports Exerc. 41(3), 620–627 (2009). doi: 10.1249/MSS.0b013e31818a0ea4 CrossRefGoogle Scholar
  133. 133.
    Qu, X.: Uncontrolled manifold analysis of gait variability: effects of load carriage and fatigue. Gait. Posture 36(2), 325–329 (2012). doi: 10.1016/j.gaitpost.2012.03.004. S0966-6362(12)00080-X [pii]CrossRefGoogle Scholar
  134. 134.
    Smith, B., Roan, M., Lee, M.: The effect of evenly distributed load carrying on lower body gait dynamics for normal weight and overweight subjects. Gait. Posture 32(2), 176–180 (2010). doi: 10.1016/j.gaitpost.2010.04.007. S0966-6362(10)00113-X [pii]CrossRefGoogle Scholar
  135. 135.
    Palmer, C.J., Riccio, G.E., Van Emmerik, R.E.A.: Orienting under load: intrinsic dynamics and postural affordances for visual perception. Ecol. Psychol. 24(2), 95–121 (2012). doi: 10.1080/10407413.2012.673970 CrossRefGoogle Scholar
  136. 136.
    Palmer, C.J., Bigelow, C., Van Emmerik, R.E.: Defining soldier equipment trade space: load effects on combat marksmanship and perception-action coupling. Ergonomics 56(11), 1708–1721 (2013). doi: 10.1080/00140139.2013.832805 CrossRefGoogle Scholar
  137. 137.
    Derrick, T.E., Fellin, R.E., Seay, J.F.: Joint contact forces while walking with vest-borne loads up to 55 kg. In: 7th World Congress of Biomechanics, Boston, MA, 2014. World Congress of Biomechanics (2014)Google Scholar
  138. 138.
    Edwards, W.B., Taylor, D., Rudolphi, T.J., Gillette, J.C., Derrick, T.R.: Effects of stride length and running mileage on a probabilistic stress fracture model. Med. Sci. Sports Exerc. 41(12), 2177–2184 (2009). doi: 10.1249/MSS.0b013e3181a984c4 CrossRefGoogle Scholar
  139. 139.
    Neugebauer, J.M., Collins, K.H., Hawkins, D.A.: Ground reaction force estimates from ActiGraph GT3X + hip accelerations. PLoS One 9(6), e99023 (2014). doi: 10.1371/journal.pone.0099023. PONE-D-14-00817 [pii]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickUSA

Personalised recommendations