Impaired Neutrophil Mechanoregulation by Fluid Flow: A Potential Contributing Factor for Microvascular Dysfunction in Obesity

  • Michael L. Akenhead
  • Xiaoyan Zhang
  • Hainsworth Y. ShinEmail author
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 16)


In this chapter, we discuss evidence that potentially implicates impaired neutrophil responses to shear stress as a putative factor in obesity-related cardiovascular disease. We do so by presenting evidence connecting obesity with microvascular disorders due to chronic inflammation and highlighting this link in the setting of hypertension and hypercholesterolemia. Furthermore, the potential impact of neutrophils on these obesity-related disease processes is discussed. Notably, both hypertension and hypercholesterolemia are associated with a deficiency in the neutrophil responsiveness to fluid shear stress. In this regard, we define the neutrophil responses to shear stress exposure and how these responses may play a role in microvascular function under physiological conditions as well as how their impairment may result in microcirculatory dysfunction. Finally, we point to data consistent with an impaired neutrophil shear sensitivity being a manifestation of obesity, particularly as it relates to hypertension and hypercholesterolemia. In this regard, we aim to suggest a novel perspective; specifically, that impaired neutrophil shear sensitivity precedes a chronic inflammatory state and serves as a putative source of obesity-related pathobiology.


Shear Stress Wall Shear Stress Fluid Shear Stress Microvascular Dysfunction Neutrophil Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    de Onis, M., Blossner, M., Borghi, E.: Global prevalence and trends of overweight and obesity among preschool children. Am. J. Clin. Nutr. 92(5), 1257–1264 (2010). doi: 10.3945/ajcn.2010.29786 Google Scholar
  2. 2.
    Finucane, M.M., Stevens, G.A., Cowan, M.J., Danaei, G., Lin, J.K., Paciorek, C.J., Singh, G.M., Gutierrez, H.R., Lu, Y., Bahalim, A.N., Farzadfar, F., Riley, L.M., Ezzati, M.: Global burden of metabolic risk factors of chronic diseases collaborating group—National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 377(9765), 557–567 (2011) doi: 10.1016/S0140-6736(10)62037-5
  3. 3.
    Ogden, C.L., Carroll, M.D., Kit, B.K., Flegal, K.M.: Prevalence of obesity in the United States, 2009–2010. NCHS Data Brief 82, 1–8 (2012)Google Scholar
  4. 4.
    Hurt, R.T., Kulisek, C., Buchanan, L.A., McClave, S.A.: The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterol. Hepatol 6(12), 780–792 (2010)Google Scholar
  5. 5.
    Poirier, P., Giles, T.D., Bray, G.A., Hong, Y., Stern, J.S., Pi-Sunyer, F.X., Eckel, R.H.: Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler. Thromb. Vasc. Biol. 26(5), 968–976 (2006). doi: 10.1161/01.ATV.0000216787.85457.f3 Google Scholar
  6. 6.
    Diaz, V.A., Mainous 3rd, A.G., Koopman, R.J., Geesey, M.E.: Undiagnosed obesity: implications for undiagnosed hypertension, diabetes, and hypercholesterolemia. Fam. Med. 36(9), 639–644 (2004)Google Scholar
  7. 7.
    Mazzoni, M.C., Schmid-Schonbein, G.W.: Mechanisms and consequences of cell activation in the microcirculation. Cardiovasc. Res. 32(4), 709–719 (1996)Google Scholar
  8. 8.
    Zhang, X., Cheng, R., Rowe, D., Sethu, P., Daugherty, A., Yu, G., Shin, H.Y.: Shear-sensitive regulation of neutrophil flow behavior and its potential impact on microvascular blood flow dysregulation in hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 3(34), 587–593 (2014). doi: 10.1161/ATVBAHA.113.302868 Google Scholar
  9. 9.
    Zhang, X., Hurng, J., Rateri, D.L., Daugherty, A., Schmid-Schonbein, G.W., Shin, H.Y.: Membrane cholesterol modulates the fluid shear stress response of polymorphonuclear leukocytes via its effects on membrane fluidity. Am. J. Physiol. Cell Physiol. 301(2), C451–C460 (2011). doi: 10.1152/ajpcell.00458.2010 Google Scholar
  10. 10.
    Schmid-Schonbein, G.W.: Analysis of inflammation. Annu. Rev. Biomed. Eng. 8, 93–131 (2006). doi: 10.1146/annurev.bioeng.8.061505.095708 Google Scholar
  11. 11.
    Makino, A., Shin, H.Y., Komai, Y., Fukuda, S., Coughlin, M., Sugihara-Seki, M., Schmid-Schonbein, G.W.: Mechanotransduction in leukocyte activation: a review. Biorheology 44(4), 221–249 (2007)Google Scholar
  12. 12.
    Fukuda, S., Yasu, T., Kobayashi, N., Ikeda, N., Schmid-Schonbein, G.W.: Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat. Circ. Res. 95(1), 100–108 (2004). doi: 10.1161/01.RES.0000133677.77465.38 Google Scholar
  13. 13.
    Singer, G., Granger, D.N.: Inflammatory responses underlying the microvascular dysfunction associated with obesity and insulin resistance. Microcirculation 14(4–5), 375–387 (2007). doi: 10.1080/10739680701283158 Google Scholar
  14. 14.
    Florez, H., Castillo-Florez, S., Mendez, A., Casanova-Romero, P., Larreal-Urdaneta, C., Lee, D., Goldberg, R.: C-reactive protein is elevated in obese patients with the metabolic syndrome. Diabetes Res. Clin. Pract. 71(1), 92–100 (2006). doi: 10.1016/j.diabres.2005.05.003 Google Scholar
  15. 15.
    Haffner, S.M.: The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am. J. Cardiol 97(2A), 3A–11A (2006). doi: 10.1016/j.amjcard.2005.11.010 Google Scholar
  16. 16.
    Zimmermann, J., Herrlinger, S., Pruy, A., Metzger, T., Wanner, C.: Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 55(2), 648–658 (1999). doi: 10.1046/j.1523-1755.1999.00273.x Google Scholar
  17. 17.
    Hotamisligil, G.S., Shargill, N.S., Spiegelman, B.M.: Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091), 87–91 (1993)Google Scholar
  18. 18.
    Fain, J.N.: Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm. 74, 443–477 (2006). doi: 10.1016/S0083-6729(06)74018-3 Google Scholar
  19. 19.
    Gerhardt, C.C., Romero, I.A., Cancello, R., Camoin, L., Strosberg, A.D.: Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Mol. Cell. Endocrinol. 175(1–2), 81–92 (2001)Google Scholar
  20. 20.
    Hwang, C.S., Loftus, T.M., Mandrup, S., Lane, M.D.: Adipocyte differentiation and leptin expression. Annu. Rev. Cell Dev. Biol. 13, 231–259 (1997). doi: 10.1146/annurev.cellbio.13.1.231 Google Scholar
  21. 21.
    Tilg, H., Moschen, A.R.: Inflammatory mechanisms in the regulation of insulin resistance. Mol. Med. 14(3–4), 222–231 (2008). doi: 10.2119/2007-00119.Tilg Google Scholar
  22. 22.
    Hotamisligil, G.S., Arner, P., Caro, J.F., Atkinson, R.L., Spiegelman, B.M.: Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Investig. 95(5), 2409–2415 (1995). doi: 10.1172/JCI117936 Google Scholar
  23. 23.
    Zarkesh-Esfahani, H., Pockley, A.G., Wu, Z., Hellewell, P.G., Weetman, A.P., Ross, R.J.: Leptin indirectly activates human neutrophils via induction of TNF-alpha. J. Immunol. 172(3), 1809–1814 (2004)Google Scholar
  24. 24.
    Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., Ferrante Jr, A.W.: Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112(12), 1796–1808 (2003). doi: 10.1172/JCI19246 Google Scholar
  25. 25.
    Roy, S., Sen, C.K.: Inflammation.: A hallmark of obesity in conflict with wound healing. Obesity: epidemiology, pathophysiology, and prevention, 2nd edn (2012). doi: 10.1201/b12261-20
  26. 26.
    Shastri, N., Paunikar, V.M., Baig, M.N.H.: Association of obesity with total leucocyte count in patients of metabolic syndrome. Int. J. Biol. Med. Res. 3(1), 1399–1401 (2012)Google Scholar
  27. 27.
    Kim, C.H., Vaziri, N.D., Rodriguez-Iturbe, B.: Integrin expression and H2O2 production in circulating and splenic leukocytes of obese rats. Obesity 15(9), 2209–2216 (2007). doi: 10.1038/oby.2007.262 Google Scholar
  28. 28.
    Nijhuis, J., Rensen, S.S., Slaats, Y., van Dielen, F.M., Buurman, W.A., Greve, J.W.: Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity 17(11), 2014–2018 (2009). doi: 10.1038/oby.2009.113 Google Scholar
  29. 29.
    Andrade, V.L., Petruceli, E., Belo, V.A., Andrade-Fernandes, C.M., Caetano Russi, C.V., Bosco, A.A., Tanus-Santos, J.E., Sandrim, V.C.: Evaluation of plasmatic MMP-8, MMP-9, TIMP-1 and MPO levels in obese and lean women. Clin. Biochem. 45(6), 412–415 (2012). doi: 10.1016/j.clinbiochem.2012.01.008 Google Scholar
  30. 30.
    Chmelar, J., Chung, K.J., Chavakis, T.: The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance. Thromb. Haemost. 109(3), 399–406 (2013). doi: 10.1160/TH12-09-0703 Google Scholar
  31. 31.
    Emanuela, F., Grazia, M., de Marco, R., Maria Paola, L., Giorgio, F., Marco, B.: Inflammation as a link between obesity and metabolic syndrome. J. Nutr. Metab. 2012, 476380 (2012). doi: 10.1155/2012/476380 Google Scholar
  32. 32.
    Boillot, A., Zoungas, S., Mitchell, P., Klein, R., Klein, B., Ikram, M.K., Klaver, C., Wang, J.J., Gopinath, B., Tai, E.S., Neubauer, A.S., Hercberg, S., Brazionis, L., Saw, S.M., Wong, T.Y., Czernichow. S.: Group M-ES: obesity and the microvasculature: a systematic review and meta-analysis. PLoS One. 8(2), e52708 (2013). doi: 10.1371/journal.pone.0052708
  33. 33.
    Scalia, R.: The microcirculation in adipose tissue inflammation. Rev. Endocr. Metabol. Disord. 14(1), 69–76 (2013). doi: 10.1007/s11154-013-9236-x MathSciNetGoogle Scholar
  34. 34.
    Aggarwal, B.B., Natarajan, K.: Tumor necrosis factors: developments during the last decade. Eur. Cytokine Netw. 7(2), 93–124 (1996)Google Scholar
  35. 35.
    He, P.: Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? Cardiovasc. Res. 87(2), 281–290 (2010). doi: 10.1093/cvr/cvq140 Google Scholar
  36. 36.
    Kotsis, V., Stabouli, S., Papakatsika, S., Rizos, Z., Parati, G.: Mechanisms of obesity-induced hypertension. Hypertens. Res. Off. J Jpn. Soc. Hypertens. 33(5), 386–393 (2010). doi: 10.1038/hr.2010.9 Google Scholar
  37. 37.
    Hall, J.E, da Silva, A.A., do Carmo, J.M., Dubinion. J., Hamza, S., Munusamy, S., Smith, G., Stec, D.E.: Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 285(23), 17271–17276 (2010) doi: 10.1074/jbc.R110.113175 Google Scholar
  38. 38.
    Kannel, W.B., Garrison, R.J., Dannenberg, A.L.: Secular blood pressure trends in normotensive persons: the Framingham study. Am. Heart J. 125(4), 1154–1158 (1993)Google Scholar
  39. 39.
    Bautista, L.E.: Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J. Hum. Hypertens. 17(4), 223–230 (2003). doi: 10.1038/sj.jhh.1001537 Google Scholar
  40. 40.
    Boos, C.J., Lip, G.Y.: Is hypertension an inflammatory process? Curr. Pharm. Des. 12(13), 1623–1635 (2006)Google Scholar
  41. 41.
    Williams, S.A., Tooke, J.E.: Noninvasive estimation of increased structurally-based resistance to blood flow in the skin of subjects with essential hypertension. Int. J. Microcirc. Clin. Exp. 11(1), 109–116 (1992). Sponsored by the European Society of MicrocirculationGoogle Scholar
  42. 42.
    de Jongh, R.T, Serne, E.H., RG, I.J., de Vries, G., Stehouwer, C.D.: Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation. 109(21), 2529–2535 (2004). doi: 10.1161/01.CIR.0000129772.26647.6F Google Scholar
  43. 43.
    Houben, A.J., Canoy, M.C., Paling, H.A., Derhaag, P.J., de Leeuw, P.W.: Quantitative analysis of retinal vascular changes in essential and renovascular hypertension. J. Hypertens. 13(12 Pt 2), 1729–1733 (1995)Google Scholar
  44. 44.
    Struijker Boudier, H.A., le Noble, J.L., Messing, M.W., Huijberts, M.S., le Noble, F.A., van Essen, H.: The microcirculation and hypertension. J. Hypertens. Suppl. Off. J. Int. Soc. Hypertens. 10(7), S147–S156 (1992)Google Scholar
  45. 45.
    Shalia, K.K., Mashru, M.R., Vasvani, J.B., Mokal, R.A., Mithbawkar, S.M., Thakur, P.K.: Circulating levels of cell adhesion molecules in hypertension. Indian J.Clin. Biochem. IJCB 24(4), 388–397 (2009). doi: 10.1007/s12291-009-0070-6 Google Scholar
  46. 46.
    Shah, T.J., Leik, C.E., Walsh, S.W.: Neutrophil infiltration and systemic vascular inflammation in obese women. Reprod. Sci. 17(2), 116–124 (2010). doi: 10.1177/1933719109348252 Google Scholar
  47. 47.
    Nishimura, S., Manabe, I., Nagasaki, M., Seo, K., Yamashita, H., Hosoya, Y., Ohsugi, M., Tobe, K., Kadowaki, T., Nagai, R., Sugiura, S.: In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J. Clin. Investig. 118(2), 710–721 (2008). doi: 10.1172/JCI33328 Google Scholar
  48. 48.
    Hashimoto, H., Kitagawa, K., Hougaku, H., Shimizu, Y., Sakaguchi, M., Nagai, Y., Iyama, S., Yamanishi, H., Matsumoto, M., Hori, M.: C-reactive protein is an independent predictor of the rate of increase in early carotid atherosclerosis. Circulation 104(1), 63–67 (2001)Google Scholar
  49. 49.
    Tershakovec, A.M., Jawad, A.F., Stouffer, N.O., Elkasabany, A., Srinivasan, S.R., Berenson, G.S.: Persistent hypercholesterolemia is associated with the development of obesity among girls: the Bogalusa heart study. Am. J. Clin. Nutr. 76(4), 730–735 (2002)Google Scholar
  50. 50.
    Okosun, I.S., Cooper, R.S., Prewitt, T.E., Rotimi, C.N.: The relation of central adiposity to components of the insulin resistance syndrome in a biracial US population sample. Ethn. Dis. 9(2), 218–229 (1999)Google Scholar
  51. 51.
    Raitakari, O.T., Porkka, K.V., Ronnemaa, T., Knip, M., Uhari, M., Akerblom, H.K., Viikari, J.S.: The role of insulin in clustering of serum lipids and blood pressure in children and adolescents: the cardiovascular risk in young finns study. Diabetologia 38(9), 1042–1050 (1995)Google Scholar
  52. 52.
    Crowther, M.A.: Pathogenesis of atherosclerosis: hematology/the education program of the American society of hematology American society of hematology education program. 436–441 (2005). doi: 10.1182/asheducation-2005.1.436
  53. 53.
    Kesaniemi, Y.A., Grundy, S.M.: Increased low density lipoprotein production associated with obesity. Arteriosclerosis 3(2), 170–177 (1983)Google Scholar
  54. 54.
    Marais, A.D.: Familial hypercholesterolaemia. Clin. Biochem. Rev/Aust. Assoc. Clin. Biochem. 25(1), 49–68 (2004)Google Scholar
  55. 55.
    Kurose, I., Wolf, R.E., Grisham, M.B., Granger, D.N.: Hypercholesterolemia enhances oxidant production in mesenteric venules exposed to Ischemia/Reperfusion. Arterioscler. Thromb. Vasc. Biol. 18(10), 1583–1588 (1998)Google Scholar
  56. 56.
    Hayakawa, H., Raij, L.: Relationship between hypercholesterolaemia, endothelial dysfunction and hypertension. J. Hypertens. 17(5), 611–619 (1999)Google Scholar
  57. 57.
    Stapleton, P.A., Goodwill, A.G., James, M.E., D’Audiffret, A.C., Frisbee, J.C.: Differential impact of familial hypercholesterolemia and combined hyperlipidemia on vascular wall and network remodeling in mice. Microcirculation 17(1), 47–58 (2010). doi: 10.1111/j.1549-8719.2009.00003.x Google Scholar
  58. 58.
    Stokes, K.Y., Cooper, D., Tailor, A., Granger, D.N.: Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radical Biol. Med. 33(8), 1026–1036 (2002)Google Scholar
  59. 59.
    Stokes, K.Y., Granger, D.N.: The microcirculation: a motor for the systemic inflammatory response and large vessel disease induced by hypercholesterolaemia? J. Physiol. 562(Pt 3), 647–653 (2005). doi: 10.1113/jphysiol.2004.079640 Google Scholar
  60. 60.
    Scalia, R., Appel 3rd, J.Z., Lefer, A.M.: Leukocyte-endothelium interaction during the early stages of hypercholesterolemia in the rabbit: role of P-selectin, ICAM-1, and VCAM-1. Arterioscler. Thromb. Vasc. Biol. 18(7), 1093–1100 (1998)Google Scholar
  61. 61.
    Stokes, K.Y., Calahan, L., Russell, J.M., Gurwara, S., Granger, D.N.: Role of platelets in hypercholesterolemia-induced leukocyte recruitment and arteriolar dysfunction. Microcirculation 13(5), 377–388 (2006). doi: 10.1080/10739680600745877 Google Scholar
  62. 62.
    van Oostrom, A.J., Sijmonsma, T.P., Verseyden, C., Jansen, E.H., de Koning, E.J., Rabelink, T.J., Castro Cabezas, M.: Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J. Lipid Res. 44(3), 576–583 (2003). doi: 10.1194/jlr.M200419-JLR200 Google Scholar
  63. 63.
    Terao, S., Yilmaz, G., Stokes, K.Y., Ishikawa, M., Kawase, T., Granger, D.N.: Inflammatory and injury responses to ischemic stroke in obese mice. Stroke. J. Cereb. Circ. 39(3), 943–950 (2008). doi: 10.1161/STROKEAHA.107.494542 Google Scholar
  64. 64.
    Drechsler, M., Megens, R.T., van Zandvoort, M., Weber, C., Soehnlein, O.: Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122(18), 1837–1845 (2010). doi: 10.1161/CIRCULATIONAHA.110.961714 Google Scholar
  65. 65.
    Kolaczkowska, E., Kubes, P.: Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13(3), 159–175 (2013). doi: 10.1038/nri3399 Google Scholar
  66. 66.
    Faldt, J., Dahlgren, C., Ridell, M.: Difference in neutrophil cytokine production induced by pathogenic and non-pathogenic mycobacteria. APMIS. Acta Pathol. Microbiol. Immunologica Scand. 110(9), 593–600 (2002)Google Scholar
  67. 67.
    Simon, S.I., Goldsmith, H.L.: Leukocyte adhesion dynamics in shear flow. Ann. Biomed. Eng. 30(3), 315–332 (2002)Google Scholar
  68. 68.
    Edwards, S.W.: Biochemistry and Physiology of the Neutrophil. Cambridge University Press, New York (2005)Google Scholar
  69. 69.
    Cicchetti, G., Allen, P.G., Glogauer, M.: Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. Crit. Rev. Oral Biol. Med. 13(3), 220–228 (2002). Official publication of the American Association of Oral BiologistsGoogle Scholar
  70. 70.
    Ehrengruber, M.U., Deranleau, D.A., Coates, T.D.: Shape oscillations of human neutrophil leukocytes: characterization and relationship to cell motility. J. Exp. Biol. 199(Pt 4), 741–747 (1996)Google Scholar
  71. 71.
    Hilmo, A., Howard, T.H.: F-actin content of neonate and adult neutrophils. Blood 69(3), 945–949 (1987)Google Scholar
  72. 72.
    Brown, K.K., Henson, P.M., Maclouf, J., Moyle, M., Ely, J.A., Worthen, G.S.: Neutrophil-platelet adhesion: relative roles of platelet P-selectin and neutrophil beta2 (DC18) integrins. Am. J. Respir. Cell Mol. Biol. 18(1), 100–110 (1998). doi: 10.1165/ajrcmb.18.1.2314 Google Scholar
  73. 73.
    Hu, H., Varon, D., Hjemdahl, P., Savion, N., Schulman, S., Li, N.: Platelet-leukocyte aggregation under shear stress: differential involvement of selectins and integrins. Thromb. Haemost. 90(4), 679–687 (2003). doi: 10.1267/THRO03040679 Google Scholar
  74. 74.
    Zarbock, A., Ley, K.: New insights into leukocyte recruitment by intravital microscopy. Curr. Top. Microbiol. Immunol. 334, 129–152 (2009). doi: 10.1007/978-3-540-93864-4_6 Google Scholar
  75. 75.
    Laudanna, C., Kim, J.Y., Constantin, G., Butcher, E.: Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37–46 (2002)Google Scholar
  76. 76.
    Luo, B.H., Carman, C.V., Springer, T.A.: Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007). doi: 10.1146/annurev.immunol.25.022106.141618 Google Scholar
  77. 77.
    Lum, A.F., Green, C.E., Lee, G.R., Staunton, D.E., Simon, S.I.: Dynamic regulation of LFA-1 activation and neutrophil arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow. J. Biol. Chem. 277(23), 20660–20670 (2002). doi: 10.1074/jbc.M202223200 Google Scholar
  78. 78.
    Neelamegham, S., Taylor, A.D., Burns, A.R., Smith, C.W., Simon, S.I.: Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular adhesion molecule-1. Blood 92(5), 1626–1638 (1998)Google Scholar
  79. 79.
    Ding, Z.M., Babensee, J.E., Simon, S.I., Lu, H., Perrard, J.L., Bullard, D.C., Dai, X.Y., Bromley, S.K., Dustin, M.L., Entman, M.L., Smith, C.W., Ballantyne, C.M.: Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J. Immunol. 163(9), 5029–5038 (1999)Google Scholar
  80. 80.
    Ehlers, M.R.: CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes. Infect. Inst. Pasteur 2(3), 289–294 (2000)MathSciNetGoogle Scholar
  81. 81.
    Larson, R.S., Springer, T.A.: Structure and function of leukocyte integrins. Immunol. Rev. 114, 181–217 (1990)Google Scholar
  82. 82.
    Lu, H., Smith, C.W., Perrard, J., Bullard, D., Tang, L., Shappell, S.B., Entman, M.L., Beaudet, A.L., Ballantyne, C.M.: LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. J. Clin. Investig. 99(6), 1340–1350 (1997). doi: 10.1172/JCI119293 Google Scholar
  83. 83.
    Sutton, D.W., Schmid-Schonbein, G.W.: Elevation of organ resistance due to leukocyte perfusion. Am. J. Physiol. 262(6 Pt 2), H1646–H1650 (1992)Google Scholar
  84. 84.
    Warnke, K.C., Skalak, T.C.: The effects of leukocytes on blood flow in a model skeletal muscle capillary network. Microvasc. Res. 40(1), 118–136 (1990)Google Scholar
  85. 85.
    Helmke, B.P., Bremner, S.N., Zweifach, B.W., Skalak, R., Schmid-Schonbein, G.W.: Mechanisms for increased blood flow resistance due to leukocytes. Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997)Google Scholar
  86. 86.
    Helmke, B.P., Sugihara-Seki, M., Skalak, R., Schmid-Schonbein, G.W.: A mechanism for erythrocyte-mediated elevation of apparent viscosity by leukocytes in vivo without adhesion to the endothelium. Biorheology 35(6), 437–448 (1998)Google Scholar
  87. 87.
    Konstantopoulos, K., Neelamegham, S., Burns, A.R., Hentzen, E., Kansas, G.S., Snapp, K.R., Berg, E.L., Hellums, J.D., Smith, C.W., McIntire, L.V., Simon, S.I.: Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin. Circulation 98(9), 873–882 (1998)Google Scholar
  88. 88.
    Diacovo, T.G., Roth, S.J., Buccola, J.M., Bainton, D.F., Springer, T.A.: Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88(1), 146–157 (1996)Google Scholar
  89. 89.
    Wagner, D.D., Frenette, P.S.: The vessel wall and its interactions. Blood 111(11), 5271–5281 (2008). doi: 10.1182/blood-2008-01-078204 Google Scholar
  90. 90.
    Eppihimer, M.J., Lipowsky, H.H.: Effects of leukocyte-capillary plugging on the resistance to flow in the microvasculature of cremaster muscle for normal and activated leukocytes. Microvasc. Res. 51(2), 187–201 (1996). doi: 10.1006/mvre.1996.0020 Google Scholar
  91. 91.
    Lipowsky, H.H.: Microvascular rheology and hemodynamics. Microcirculation 12(1), 5–15 (2005). doi: 10.1080/10739680590894966 Google Scholar
  92. 92.
    Makino, A., Glogauer, M., Bokoch, G.M., Chien, S., Schmid-Schonbein, G.W.: Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases. Am. J. Physiol. Cell Physiol. 288(4), C863–C871 (2005). doi: 10.1152/ajpcell.00358.2004 Google Scholar
  93. 93.
    Shin, H.Y., Zhang, X., Makino, A., Schmid-Schonbein, G.W.: Mechanobiological Evidence for the Control of Neutrophil Activity by Fluid Shear Stress. In: Mechanobiology Handbook, pp. 139–175. CRC Press, Boca Raton (2011). doi: 10.1201/b10780-11
  94. 94.
    Pohlman, T.H., Harlan, J.M.: Adaptive responses of the endothelium to stress. J. Surg. Res. 89(1), 85–119 (2000). doi: 10.1006/jsre.1999.5801 Google Scholar
  95. 95.
    Samet, M.M., Lelkes, P.L.: The hemodynamic environment of endothelium in vivo and its simulation in vitro. Mechanical Forces and the Endothelium, pp. 1–32. Harwood Academic Publishers, Amsterdam (1999)Google Scholar
  96. 96.
    Tozeren, A., Ozkaya, N., Tozeren, H.: Flow of particles along a deformable tube. J. Biomech. 15(7), 517–527 (1982)Google Scholar
  97. 97.
    Chang, K.C., Hammer, D.A.: The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys. J. 76(3), 1280–1292 (1999). doi: 10.1016/S0006-3495(99)77291-7 Google Scholar
  98. 98.
    Komai, Y., Schmid-Schonbein, G.W.: De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes. Ann. Biomed. Eng. 33(10), 1375–1386 (2005). doi: 10.1007/s10439-005-6768-6 Google Scholar
  99. 99.
    Fukuda, S., Yasu, T., Predescu, D.N., Schmid-Schonbein, G.W.: Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ. Res. 86(1), E13–E18 (2000)Google Scholar
  100. 100.
    Moazzam, F., DeLano, F.A., Zweifach, B.W., Schmid-Schonbein, G.W.: The leukocyte response to fluid stress. Proc. Nat. Acad. Sci. USA 94(10), 5338–5343 (1997)Google Scholar
  101. 101.
    Shive, M.S., Salloum, M.L., Anderson, J.M.: Shear stress-induced apoptosis of adherent neutrophils: a mechanism for persistence of cardiovascular device infections. Proc. Nat. Acad. Sci. USA. 97(12), 6710–6715 (2000). doi: 10.1073/pnas.110463197 Google Scholar
  102. 102.
    Akenhead, M.L., Zhang, X., Shin, H.Y.: Characterization of the shear stress regulation of CD18 surface expression by HL60-derived neutrophil-like cells. Biomech. Model. Mechanobiol. (2013). doi: 10.1007/s10237-013-0541-9 Google Scholar
  103. 103.
    Niggli, V.: Signaling to migration in neutrophils: importance of localized pathways. Int J. Biochem. Cell Biol. 35(12), 1619–1638 (2003)Google Scholar
  104. 104.
    Fukuda, S., Schmid-Schonbein, G.W.: Regulation of CD18 expression on neutrophils in response to fluid shear stress. Proc. Nat. Acad. Sci. USA. 100(23), 13152–13157 (2003). doi: 10.1073/pnas.2336130100
  105. 105.
    Shin, H.Y., Simon, S.I., Schmid-Schonbein, G.W.: Fluid shear-induced activation and cleavage of CD18 during pseudopod retraction by human neutrophils. J. Cell. Physiol. 214(2), 528–536 (2008). doi: 10.1002/jcp.21235 Google Scholar
  106. 106.
    Zhang, X., Zhan, D., Shin, H.Y.: Integrin subtype-dependent CD18 cleavage under shear and its influence on leukocyte-platelet binding. J. Leukoc. Biol. 93(2), 251–258 (2013). doi: 10.1189/jlb.0612302 Google Scholar
  107. 107.
    Sugihara-Seki, M., Schmid-Schonbein, G.W.: The fluid shear stress distribution on the membrane of leukocytes in the microcirculation. J. Biomech. Eng. 125(5), 628–638 (2003)Google Scholar
  108. 108.
    Butler, P.J., Tsou, T.C., Li, J.Y., Usami, S., Chien, S.: Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 16(2), 216–218 (2002). doi: 10.1096/fj.01-0434fje Google Scholar
  109. 109.
    Haidekker, M.A., L’Heureux, N., Frangos, J.A.: Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am. J. Physiol. Heart Circ. Physiol. 278(4), H1401–H1406 (2000)Google Scholar
  110. 110.
    Rizzo, V., McIntosh, D.P., Oh, P., Schnitzer, J.E.: In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J. Biol. Chem. 273(52), 34724–34729 (1998)Google Scholar
  111. 111.
    Rizzo, V., Sung, A., Oh, P., Schnitzer, J.E.: Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J. Biol. Chem. 273(41), 26323–26329 (1998)Google Scholar
  112. 112.
    Chachisvilis, M., Zhang, Y.L., Frangos, J.A.: G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Nat. Acad. Sci. USA. 103(42), 15463–15468 (2006). doi: 10.1073/pnas.0607224103
  113. 113.
    Makino, A., Prossnitz, E.R., Bunemann, M., Wang, J.M., Yao, W., Schmid-Schonbein, G.W.: G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am. J. Physiol. Cell Physiol. 290(6), C1633–C1639 (2006). doi: 10.1152/ajpcell.00576.2005 Google Scholar
  114. 114.
    Zhang, Y.L., Frangos, J.A., Chachisvilis, M.: Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am. J. Physiol. Cell Physiol. 296(6), C1391–C1399 (2009). doi: 10.1152/ajpcell.00549.2008 Google Scholar
  115. 115.
    Chen, K.D., Li, Y.S., Kim, M., Li, S., Yuan, S., Chien, S., Shyy, J.Y.: Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274(26), 18393–18400 (1999)Google Scholar
  116. 116.
    Jin, Z.G., Ueba, H., Tanimoto, T., Lungu, A.O., Frame, M.D., Berk, B.C.: Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93(4), 354–363 (2003). doi: 10.1161/01.RES.0000089257.94002.96 Google Scholar
  117. 117.
    Lee, H.J., Koh, G.Y.: Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem. Biophys. Res. Commun. 304(2), 399–404 (2003)Google Scholar
  118. 118.
    Milkiewicz, M., Doyle, J.L., Fudalewski, T., Ispanovic, E., Aghasi, M., Haas, T.L.: HIF-1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J. Physiol. 583(Pt 2), 753–766 (2007). doi: 10.1113/jphysiol.2007.136325 Google Scholar
  119. 119.
    Shay-Salit, A., Shushy, M., Wolfovitz, E., Yahav, H., Breviario, F., Dejana, E., Resnick, N.: VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Nat. Acad. Sci. USA. 99(14), 9462–9467 (2002). doi: 10.1073/pnas.142224299 Google Scholar
  120. 120.
    Tarbell, J.M., Weinbaum, S., Kamm, R.D.: Cellular fluid mechanics and mechanotransduction. Ann. Biomed. Eng. 33(12), 1719–1723 (2005). doi: 10.1007/s10439-005-8775-z Google Scholar
  121. 121.
    Kamm, R.D., Kaazempur-Mofrad, M.R.: On the molecular basis for mechanotransduction. Mech. Chem. Biosyst. MCB 1(3), 201–209 (2004)Google Scholar
  122. 122.
    Lee, S.E., Kamm, R.D., Mofrad, M.R.: Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40(9), 2096–2106 (2007). doi: 10.1016/j.jbiomech.2007.04.006 Google Scholar
  123. 123.
    Chen, A.K., Latz, M.I., Sobolewski, P., Frangos, J.A.: Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292(5), R2020–R2027 (2007). doi: 10.1152/ajpregu.00649.2006 Google Scholar
  124. 124.
    Mitchell, M.J., King, M.R.: Shear-induced resistance to neutrophil activation via the formyl peptide receptor. Biophys. J. 102(8), 1804–1814 (2012). doi: 10.1016/j.bpj.2012.03.053 Google Scholar
  125. 125.
    Su, S.S., Schmid-Schonbein, G.W.: Internalization of formyl peptide receptor in leukocytes subject to fluid stresses. Cell. Mol. Bioeng. 3(1), 20–29 (2010). doi: 10.1007/s12195-010-0111-5 Google Scholar
  126. 126.
    Chen, A.Y., DeLano, F.A., Valdez, S.R., Ha, J.N., Shin, H.Y., Schmid-Schonbein, G.W.: Receptor cleavage reduces the fluid shear response in neutrophils of the spontaneously hypertensive rat. Am. J. Physiol. Cell Physiol. 299(6), C1441–C1449 (2010). doi: 10.1152/ajpcell.00157.2010 Google Scholar
  127. 127.
    Marschel, P., Schmid-Schonbein, G.W.: Control of fluid shear response in circulating leukocytes by integrins. Ann. Biomed. Eng. 30(3), 333–343 (2002)Google Scholar
  128. 128.
    Bodin, S., Welch, M.D.: Plasma membrane organization is essential for balancing competing pseudopod- and uropod-promoting signals during neutrophil polarization and migration. Mol. Biol. Cell 16(12), 5773–5783 (2005). doi: 10.1091/mbc.E05-04-0358 Google Scholar
  129. 129.
    Lenaz, G.: Lipid fluidity and membrane protein dynamics. Biosci. Rep. 7(11), 823–837 (1987)Google Scholar
  130. 130.
    Ben-Bassat, H., Polliak, A., Rosenbaum, S.M., Naparstek, E., Shouval, D., Inbar, M.: Fluidity of membrane lipids and lateral mobility of concanavalin A receptors in the cell surface of normal lymphocytes and lymphocytes from patients with malignant lymphomas and leukemias. Cancer Res. 37(5), 1307–1312 (1977)Google Scholar
  131. 131.
    Tomonaga, A., Hirota, M., Snyderman, R.: Effect of membrane fluidizers on the number and affinity of chemotactic factor receptors on human polymorphonuclear leukocytes. Microbiol. Immunol. 27(11), 961–972 (1983)Google Scholar
  132. 132.
    Yuli, I., Tomonaga, A., Synderman, R.: Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers. Proc. Nat. Acad. Sci. USA. 79(19), 5906–5910 (1982)Google Scholar
  133. 133.
    Chabanel, A., Flamm, M., Sung, K.L., Lee, M.M., Schachter, D., Chien, S.: Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys. J. 44(2), 171–176 (1983). doi: 10.1016/S0006-3495(83)84288-X Google Scholar
  134. 134.
    Coderch, L., Fonollosa, J., De Pera, M., Estelrich, J., De La Maza, A., Parra, J.L.: Influence of cholesterol on liposome fluidity by EPR. Relationship with percutaneous absorption. J. Controlled Release Off. J. Controlled Release Soc. 68(1), 85–95 (2000)Google Scholar
  135. 135.
    Gleason, M.M., Medow, M.S., Tulenko, T.N.: Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells. Circ. Res. 69(1), 216–227 (1991)Google Scholar
  136. 136.
    Niggli, V., Meszaros, A.V., Oppliger, C., Tornay, S.: Impact of cholesterol depletion on shape changes, actin reorganization, and signal transduction in neutrophil-like HL-60 cells. Exp. Cell Res. 296(2), 358–368 (2004). doi: 10.1016/j.yexcr.2004.02.015 Google Scholar
  137. 137.
    Pierini, L.M., Eddy, R.J., Fuortes, M., Seveau, S., Casulo, C., Maxfield, F.R.: Membrane lipid organization is critical for human neutrophil polarization. J. Biol. Chem. 278(12), 10831–10841 (2003). doi: 10.1074/jbc.M212386200 Google Scholar
  138. 138.
    Zhang, X., Shin, H.Y.: Linking the pathobiology of hypercholesterolemia with the neutrophil mechanotransduction. Lipoproteins—Role in Health and Diseases, Intech d.o.o, Rijeka, pp. 223–252 (2012). doi: 10.1002/app.39543
  139. 139.
    Palmblad, J., Hallberg, D., Engstedt, L.: Polymorphonuclear (PMN) function after small intestinal shunt operation for morbid obesity. Br. J. Haematol. 44(1), 101–108 (1980)Google Scholar
  140. 140.
    DeLano, F.A., Schmid-Schonbein, G.W.: Enhancement of glucocorticoid and mineralocorticoid receptor density in the microcirculation of the spontaneously hypertensive rat. Microcirculation 11(1), 69–78 (2004)Google Scholar
  141. 141.
    Sutanto, W., Oitzl, M.S., Rots, N.Y., Schobitz, B., Van den Berg, D.T., Van Dijken, H.H., Mos, J., Cools, A.R., Tilders, F.J., Koolhaas, J.M., et al.: Corticosteroid receptor plasticity in the central nervous system of various rat models. Endocr. Regul. 26(3), 111–118 (1992)Google Scholar
  142. 142.
    Kordonowy, L.L., Burg, E., Lenox, C.C., Gauthier, L.M., Petty, J.M., Antkowiak, M., Palvinskaya, T., Ubags, N., Rincon, M., Dixon, A.E., Vernooy, J.H., Fessler, M.B., Poynter, M.E., Suratt, B.T.: Obesity is associated with neutrophil dysfunction and attenuation of murine acute lung injury. Am. J. Respir. Cell Mol. Biol. 47(1), 120–127 (2012). doi: 10.1165/rcmb.2011-0334OC Google Scholar
  143. 143.
    Bakan, E., Yildirim, A., Kurtul, N., Polat, M.F., Dursun, H., Cayir, K.: Effects of type 2 diabetes mellitus on plasma fatty acid composition and cholesterol content of erythrocyte and leukocyte membranes. Acta Diabetol. 43(4), 109–113 (2006). doi: 10.1007/s00592-007-0224-4 Google Scholar
  144. 144.
    Day, A.P., Bellavia, S., Jones, O.T., Stansbie, D.: Effect of simvastatin therapy on cell membrane cholesterol content and membrane function as assessed by polymorphonuclear cell NADPH oxidase activity. Ann. Clin. Biochem. 34(Pt 3), 269–275 (1997)Google Scholar
  145. 145.
    Levy, Y., Leibowitz, R., Aviram, M., Brook, J.G., Cogan, U.: Reduction of plasma cholesterol by lovastatin normalizes erythrocyte membrane fluidity in patients with severe hypercholesterolaemia. Br. J. Clin. Pharmacol. 34(5), 427–430 (1992)Google Scholar
  146. 146.
    Oh, H., Mohler 3rd, E.R., Tian, A., Baumgart, T., Diamond, S.L.: Membrane cholesterol is a biomechanical regulator of neutrophil adhesion. Arterioscler. Thromb. Vasc. Biol. 29(9), 1290–1297 (2009). doi: 10.1161/ATVBAHA.109.189571 Google Scholar
  147. 147.
    Henninger, D.D., Gerritsen, M.E., Granger, D.N.: Low-density lipoprotein receptor knockout mice exhibit exaggerated microvascular responses to inflammatory stimuli. Circ. Res. 81(2), 274–281 (1997)Google Scholar
  148. 148.
    Lechi, C., Zatti, M., Corradini, P., Bonadonna, G., Arosio, E., Pedrolli, C., Lechi, A.: Increased leukocyte aggregation in patients with hypercholesterolaemia. Clin. Chim. Acta. Int. J. Clin. Chem. 144(1), 11–16 (1984)Google Scholar
  149. 149.
    Tomida, K., Tamai, K., Matsuda, Y., Matsubara, A., Ogura, Y.: Hypercholesterolemia induces leukocyte entrapment in the retinal microcirculation of rats. Curr. Eye Res. 23(1), 38–43 (2001)Google Scholar
  150. 150.
    Natarajan, S., Nietert, P.J.: Hypertension, diabetes, hypercholesterolemia, and their combinations increased health care utilization and decreased health status. J. Clin. Epidemiol. 57(9), 954–961 (2004). doi: 10.1016/j.jclinepi.2004.01.011 Google Scholar
  151. 151.
    Sowers, J.R., Epstein, M., Frohlich, E.D.: Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 37(4), 1053–1059 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael L. Akenhead
    • 1
  • Xiaoyan Zhang
    • 1
    • 2
  • Hainsworth Y. Shin
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Mechanical EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations