Advertisement

The Vicious Cycle of Estrogen Consumption and Obesity: The Role of Mechanotransduction

  • Naama Shoham
  • Natan T. Shaked
  • Dafna Benayahu
  • Amit GefenEmail author
Chapter
  • 1k Downloads
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 16)

Abstract

This chapter links mechanotransduction phenomena in adipocytes and estrogen function, and suggests a possible mechanism involved in the regulation of fat tissue mass and the onset and progression of obesity. The development, structure and distribution of the white adipose tissues in obesity is reviewed, and so are estrogen production and consumption processes and their potential roles in fat tissue development. We further present mechanotransduction phenomena in adipose cells and tissues, as well as up-to-date literature focusing on mechanical properties of adipose cells and tissues. The novel perspectives in this chapter regarding structure-function relationships in adipose tissues point to a positive feedback loop in which cell and tissue mechanics and estrogen activity play complementary roles, and which ultimately leads to increased fat mass and obesity.

Keywords

Adipose Tissue Brown Adipose Tissue White Adipose Tissue Subcutaneous Adipose Tissue Magnetic Resonance Elastography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research work is being supported by a Grant from the Israel Science Foundation (no. 611/12, A.G. and D.B.) and by the Israel Ministry of Science and Technology (Women in Science Scholarship awarded to N.S.).

References

  1. 1.
    Alkhouri, N., Gornicka, A., Berk, M.P., Thapaliya, S., Dixon, L.J., Kashyap, S., Schauer, P.R., Feldstein, A.E.: Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J. Biol. Chem. 285, 3428–3438 (2010)CrossRefGoogle Scholar
  2. 2.
    Anderson, L.A., McTernan, P.G., Barnett, A.H., Kumar, S.: The effects of androgens and estrogens on preadipocyte proliferation in human adipose tissue: influence of gender and site. J. Clin. Endocrinol. Metab. 86, 5045–5051 (2001)CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Shoham, N., Lin, F.H., Gefen, A.: Influence of the extracellular matrix stiffness in tissue-engineered constructs on deformed cell shapes under large compressive deformations. J. Biomater Tissue Eng. 3, 1–4 (2013)CrossRefGoogle Scholar
  4. 4.
    Bishitz, Y., Gabai, H., Girshovitz, P., Shaked, N.T.: Optical-mechanical signatures of cancer cells based on fluctuation profiles measured by interferometry. J. Biophotonics (2013). doi: 10.1002/jbio.201300019 Google Scholar
  5. 5.
    Case, N., Xie, Z., Sen, B., Styner, M., Zou, M., O’Conor, C., Horowitz, M., Rubin, J.: Mechanical activation of β-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells. J. Orthop. Res. 28, 1531–1538 (2010)CrossRefGoogle Scholar
  6. 6.
    Chiu, Y.C., Cheng, M.H., Uriel, S., Brey, E.M.: Materials for engineering vascularized adipose tissue. J. Tissue Viability 20, 37–48 (2011)CrossRefGoogle Scholar
  7. 7.
    Cinti, S.: Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J. Endocrinol. Invest. 25, 823–835 (2002)CrossRefGoogle Scholar
  8. 8.
    Cinti, S.: Between brown and white: novel aspects of adipocyte differentiation. Ann. Med. 43, 104–115 (2011)CrossRefGoogle Scholar
  9. 9.
    Cinti, S.: The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids 73, 9–15 (2005)CrossRefGoogle Scholar
  10. 10.
    Cooke, P.S., Naaz, A.: Role of estrogens in adipocyte development and function. Exp. Biol. Med. 229, 1127–1135 (2004). (Maywood)Google Scholar
  11. 11.
    Cooper, S.C., Roncari, D.A.: 17-beta-estradiol increases mitogenic activity of medium from cultured preadipocytes of massively obese persons. J. Clin. Invest. 83, 1925–1929 (1989)CrossRefGoogle Scholar
  12. 12.
    Cutler Jr, G.B.: The role of estrogen in bone growth and maturation during childhood and adolescence. J. Steroid Biochem. Mol. Biol. 61, 141–144 (1997)CrossRefGoogle Scholar
  13. 13.
    Darling, E.M., Topel, M., Zauscher, S., Vail, T.P., Guilak, F.: Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41, 454–464 (2008)CrossRefGoogle Scholar
  14. 14.
    David, V., Martin, A., Lafage-Proust, M.H., Malaval, L., Peyroche, S., Jones, D.B., Vico, L., Guignandon, A.: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148, 2553–2562 (2007)CrossRefGoogle Scholar
  15. 15.
    de Ferranti, S., Mozaffarian, D.: The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin. Chem. 54, 945–955 (2008)CrossRefGoogle Scholar
  16. 16.
    Dieudonné, M.N., Leneveu, M.C., Giudicelli, Y., Pecquery, R.: Evidence for functional estrogen receptors alpha and beta in human adipose cells: regional specificities and regulation by estrogens. Am. J. Physiol. Cell Physiol. 286, 655–661 (2004)CrossRefGoogle Scholar
  17. 17.
    Dieudonne, M.N., Pecquery, R., Leneveu, M.C., Giudicelli, Y.: Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2. Endocrinology 141, 649–656 (2000)Google Scholar
  18. 18.
    Dos Santos, E., Dieudonné, M.N., Leneveu, M.C., Sérazin, V., Rincheval, V., Mignotte, B., Chouillard, E., De Mazancourt, P., Giudicelli, Y., Pecquery, R.: Effects of 17beta-estradiol on preadipocyte proliferation in human adipose tissue: involvement of IGF1-R signaling. Horm. Metab. Res. 42, 514–520 (2010)CrossRefGoogle Scholar
  19. 19.
    Feng, B., Zhang, T., Xu, H.: Human adipose dynamics and metabolic health. Ann. N. Y. Acad. Sci. 1281, 160–177 (2013)CrossRefGoogle Scholar
  20. 20.
    Flegal, K.M., Kit, B.K., Orpana, H., Graubard, B.I.: Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013)CrossRefGoogle Scholar
  21. 21.
    Frayn, K.N., Karpe, F., Fielding, B.A., Macdonald, I.A., Coppack, S.W.: Integrative physiology of human adipose tissue. Int. J. Obes. Relat. Metab. Disord. 27, 875–888 (2003)CrossRefGoogle Scholar
  22. 22.
    Geerligs, M., Peters, G.W., Ackermans, P.A., Oomens, C.W., Baaijens, F.P.: Does subcutaneous adipose tissue behave as an (anti-)thixotropic material? J. Biomech. 43, 1153–1159 (2010)CrossRefGoogle Scholar
  23. 23.
    Geerligs, M., Peters, G.W., Ackermans, P.A., Oomens, C.W., Baaijens, F.P.: Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45, 677–688 (2008)Google Scholar
  24. 24.
    Gefen, A., Haberman, E.: Viscoelastic properties of ovine adipose tissue covering the gluteus muscles. J. Biomech. Eng. 129, 924–930 (2007)CrossRefGoogle Scholar
  25. 25.
    Gefen, A., Megido-Ravid, M., Itzchak, Y.: In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J. Biomech. 34, 1661–1665 (2001)CrossRefGoogle Scholar
  26. 26.
    Ghosh, S., Ashcraft, K., Jahid, M.J., April, C., Ghajar, C.M., Ruan, J., Wang, H., Foster, M., Hughes, D.C., Ramirez, A.G., Huang, T., Fan, J.B., Hu, Y., Li, R.: Regulation of adipose oestrogen output by mechanical stress. Nat. Commun. 4, 1821 (2013)CrossRefGoogle Scholar
  27. 27.
    Green, H., Kehinde, O.: An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5, 19–27 (1975)CrossRefGoogle Scholar
  28. 28.
    Gustafson, B.: Adipose tissue, inflammation and atherosclerosis. J. Atheroscler. Thromb. 17, 332–341 (2010)CrossRefGoogle Scholar
  29. 29.
    Hara, Y., Wakino, S., Tanabe, Y., Saito, M., Tokuyama, H., Washida, N., Tatematsu, S., Yoshioka, K., Homma, K., Hasegawa, K., Minakuchi, H., Fujimura, K., Hosoya, K., Hayashi, K., Nakayama, K., Itoh, H.: Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch. Sci. Signal. 4, ra3 (2011)Google Scholar
  30. 30.
    Hausman, D.B., DiGirolamo, M., Bartness, T.J., Hausman, G.J., Martin, R.J.: The biology of white adipocyte proliferation. Obes. Rev. 2, 239–254 (2001)CrossRefGoogle Scholar
  31. 31.
    Homma, H., Kurachi, H., Nishio, Y., Takeda, T., Yamamoto, T., Adachi, K., Morishige, K., Ohmichi, M., Matsuzawa, Y., Murata, Y.: Estrogen suppresses transcription of lipoprotein lipase gene. Existence of a unique estrogen response element on the lipoprotein lipase promoter. J. Biol. Chem. 275, 11404–11411 (2000)CrossRefGoogle Scholar
  32. 32.
    Hossain, M.G., Iwata, T., Mizusawa, N., Shima, S.W., Okutsu, T., Ishimoto, K., Yoshimoto, K.: Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARgamma2 and C/EBPalpha. J. Biosci. Bioeng. 109, 297–303 (2010)CrossRefGoogle Scholar
  33. 33.
    Huang, S.C., Wu, T.C., Yu, H.C., Chen, M.R., Liu, C.M., Chiang, W.S., Lin, K.M.: Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC. Cell Biol. 11, 18 (2010)CrossRefGoogle Scholar
  34. 34.
    Iatridis, J.C., Wu, J., Yandow, J.A., Langevin, H.M.: Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension. Connect. Tissue Res. 44, 208–217 (2003)CrossRefGoogle Scholar
  35. 35.
    Jeong, S., Yoon, M.: 17β-Estradiol inhibition of PPARγ-induced adipogenesis and adipocyte-specific gene expression. Acta Pharmacol. Sin. 32, 230–238 (2011)CrossRefGoogle Scholar
  36. 36.
    Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., Sumner, A.E., Cushman, S.W., Periwal, V.: Hypertrophy and/or Hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5, e1000324 (2009)CrossRefGoogle Scholar
  37. 37.
    Kato, H., Suga, H., Eto, H., Araki, J., Aoi, N., Doi, K., Iida, T., Tabata, Y., Yoshimura, K.: Reversible adipose tissue enlargement induced by external tissue suspension: possible contribution of basic fibroblast growth factor in the preservation of enlarged tissue. Tissue Eng. Part A 16, 2029–2040 (2010)CrossRefGoogle Scholar
  38. 38.
    Kershaw, E.E., Flier, J.S.: Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548–2556 (2004)CrossRefGoogle Scholar
  39. 39.
    Krouskop, T.A., Wheeler, T.M., Kallel, F., Garra, B.S., Hall, T.: Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20, 260–274 (1998)CrossRefGoogle Scholar
  40. 40.
    Langin, D.: Recruitment of brown fat and conversion of white into brown adipocytes: strategies to fight the metabolic complications of obesity? Biochim. Biophys. Acta 1801, 372–376 (2010)CrossRefGoogle Scholar
  41. 41.
    Lea-Currie, Y.R., Monroe, D., Mcintosh, M.K.: Dehydroepiandrosterone and related steroids alter 3T3-L1 preadipocyte proliferation and differentiation. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol. 123, 17–25 (1999)Google Scholar
  42. 42.
    Lee, M.J., Wu, Y., Fried, S.K.: Adipose tissue remodeling in pathophysiology of obesity. Curr. Opin. Clin. Nutr. Metab. Care 13, 371–376 (2010)CrossRefGoogle Scholar
  43. 43.
    Levy, A., Enzer, S., Shoham, N., Zaretsky, U., Gefen, A.: Large, but not small sustained tensile strains stimulate adipogenesis in culture. Ann. Biomed. Eng. 40, 1052–1060 (2012)CrossRefGoogle Scholar
  44. 44.
    Linder-Ganz, E., Shabshin, N., Itzchak, Y., Gefen, A.: Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. J. Biomech. 40, 1443–1454 (2007)CrossRefGoogle Scholar
  45. 45.
    Luu, Y.K., Capilla, E., Rosen, C.J., Gilsanz, V., Pessin, J.E., Judex, S., Rubin, C.T.: Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J. Bone Miner. Res. 24, 50–61 (2009)CrossRefGoogle Scholar
  46. 46.
    Maddalozzo, G.F., Iwaniec, U.T., Turner, R.T., Rosen, C.J., Widrick, J.J.: Whole-body vibration slows the acquisition of fat in mature female rats. Int. J. Obes. (Lond) 32, 1348–1354 (2008)CrossRefGoogle Scholar
  47. 47.
    Maruyama, K., Oshima, T., Ohyama, K.: Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. Pediatr. Int. 52, 33–38 (2010)CrossRefGoogle Scholar
  48. 48.
    Maury, E., Brichard, S.M.: Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 314, 1–16 (2010)CrossRefGoogle Scholar
  49. 49.
    Murano, I., Barbatelli, G., Parisani, V., Latini, C., Muzzonigro, G., Castellucci, M., Cinti, S.: Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 49, 1562–1568 (2008)CrossRefGoogle Scholar
  50. 50.
    Nelson, L.R., Bulun, S.E.: Estrogen production and action. J. Am. Acad. Dermatol. 45, S116–S124 (2001)CrossRefGoogle Scholar
  51. 51.
    Nishimura, S., Manabe, I., Nagai, R.: Adipose tissue inflammation in obesity and metabolic syndrome. Discov. Med. 8, 55–60 (2009)Google Scholar
  52. 52.
    Otto, T.C., Lane, M.D.: Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40, 229–242 (2005)CrossRefGoogle Scholar
  53. 53.
    Ozcivici, E., Luu, Y.K., Rubin, C.T., Judex, S.: Low-level vibrations retain bone marrow’s osteogenic potential and augment recovery of trabecular bone during reambulation. PLoS ONE 5, e11178 (2010)CrossRefGoogle Scholar
  54. 54.
    Poissonnet, C.M., Burdi, A.R., Garn, S.M.: The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum. Dev. 10, 1–11 (1984)CrossRefGoogle Scholar
  55. 55.
    Qin, L.Q., Wang, P.Y., Kaneko, T., Hoshi, K., Sato, A.: Estrogen: one of the risk factors in milk for prostate cancer. Med. Hypotheses 62, 133–142 (2004)CrossRefGoogle Scholar
  56. 56.
    Romijn, J.A., Fliers, E.: Sympathetic and parasympathetic innervation of adipose tissue: metabolic implications. Curr. Opin. Clin. Nutr. Metab. Care 8, 440–444 (2005)CrossRefGoogle Scholar
  57. 57.
    Roncari, D.A., Van, R.L.: Promotion of human adipocyte precursor replication by 17beta-estradiol in culture. J. Clin. Invest. 62, 503–508 (1978)CrossRefGoogle Scholar
  58. 58.
    Saely, C.H., Geiger, K., Drexel, H.: Brown versus white adipose tissue: a mini-review. Gerontology 58, 15–23 (2012)CrossRefGoogle Scholar
  59. 59.
    Samani, A., Zubovits, J., Plewes, D.: Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52, 1565–1576 (2007)CrossRefGoogle Scholar
  60. 60.
    Satterthwaite, D., McGranahan, G., Tacoli, C.: Urbanization and its implications for food and farming. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2809–2820 (2010)Google Scholar
  61. 61.
    Sen, B., Styner, M., Xie, Z., Case, N., Rubin, C.T., Rubin, J.: Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J. Biol. Chem. 284, 34607–34617 (2009)CrossRefGoogle Scholar
  62. 62.
    Sen, B., Xie, Z., Case, N., Ma, M., Rubin, C., Rubin, J.: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149, 6065–6075 (2008)CrossRefGoogle Scholar
  63. 63.
    Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., Rubin, J.: Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44, 593–599 (2011)CrossRefGoogle Scholar
  64. 64.
    Shaked, N.T., Satterwhite, L.L., Bursac, N., Wax, A.: Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy. Biomed. Opt. Express. 1, 706–719 (2010)CrossRefGoogle Scholar
  65. 65.
    Shoham, N., Gefen, A.: Mechanotransduction in adipocytes. J. Biomech. 3(45), 1–8 (2012)CrossRefGoogle Scholar
  66. 66.
    Shoham, N., Gefen, A.: Stochastic modeling of adipogenesis in 3T3-L1 cultures to determine probabilities of events in the cell’s life cycle. Ann. Biomed. Eng. 39, 2637–2653 (2011)CrossRefGoogle Scholar
  67. 67.
    Shoham, N., Girshovitz, P., Katzengold, R., Shaked, N.T., Benayahu, D., Gefen, A.: Adipocyte stiffness increases with accumulation of lipid droplets. Biophys. J. (2014) (Accepted)Google Scholar
  68. 68.
    Shoham, N., Gottlieb, R., Sharabani-Yosef, O., Zaretsky, U., Benayahu, D., Gefen, A.: Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am. J. Physiol. Cell Physiol. 302, C429–C441 (2012)CrossRefGoogle Scholar
  69. 69.
    Shoham, N., Sasson, A.L., Lin, F.H., Benayahu, D., Haj-Ali, R., Gefen, A.: The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: towards developing a vessel for delivery of preadipocytes to native tissues. J. Mech. Behav. Biomed. Mater. (2013). doi:  10.1016/j.jmbbm.2013.08.009
  70. 70.
    Simpson, E.R.: Sources of estrogen and their importance. J. Steroid Biochem. Mol. Biol. 86, 225–230 (2003)CrossRefGoogle Scholar
  71. 71.
    Sinkus, R., Tanter, M., Xydeas, T., Catheline, S., Bercoff, J., Fink, M.: Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn. Reson. Imaging 23, 159–165 (2005)CrossRefGoogle Scholar
  72. 72.
    Strissel, K.J., Stancheva, Z., Miyoshi, H., Perfield, J.W., DeFuria, J., Jick, Z., Greenberg, A.S., Obin, M.S.: Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56, 2910–2918 (2007)CrossRefGoogle Scholar
  73. 73.
    Sun, K., Kusminski, C.M., Scherer, P.E.: Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011)CrossRefGoogle Scholar
  74. 74.
    Symonds, M.E., Pope, M., Sharkey, D., Budge, H.: Adipose tissue and fetal programming. Diabetologia 55, 1597–1606 (2012)CrossRefGoogle Scholar
  75. 75.
    Tanabe, Y., Koga, M., Saito, M., Matsunaga, Y., Nakayama, K.: Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J. Cell Sci. 117, 3605–3614 (2004)CrossRefGoogle Scholar
  76. 76.
    Tanabe, Y., Matsunaga, Y., Saito, M., Nakayama, K.: Involvement of cyclooxygenase-2 in synergistic effect of cyclic stretching and eicosapentaenoic acid on adipocyte differentiation. J. Pharmacol. Sci. 106, 478–484 (2008)CrossRefGoogle Scholar
  77. 77.
    Tirkkonen, L., Halonen, H., Hyttinen, J., Kuokkanen, H., Sievänen, H., Koivisto, A.M., Mannerström, B., Sándor, G.K., Suuronen, R., Miettinen, S., Haimi, S.: The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J. R. Soc. Interface 8, 1736–1747 (2011)CrossRefGoogle Scholar
  78. 78.
    Turner, N.J., Jones, H.S., Davies, J.E., Canfield, A.E.: Cyclic stretch-induced TGFbeta1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem Biophys Res Commun. 377, 1147–1151 (2008)CrossRefGoogle Scholar
  79. 79.
    Weaver, J.B., Doyley, M., Cheung, Y., Kennedy, F., Madsen, E.L., Van Houten, E.E., Paulsen, K.: Imaging the shear modulus of the heel fat pads. Clin. Biomech. 20, 312–319 (2005) (Bristol, Avon)Google Scholar
  80. 80.
    Young-Nam, K., Won, K.K., Sang-Hak, L., Keewon, K., Eun, K., Tai, H.H., HyoukSoo, H., Kwang-Hee, B.: Monitoring of adipogenic differentiation at single cell level using atomic force microscopic analysis. Spectroscopy 26, 329–335 (2011)CrossRefGoogle Scholar
  81. 81.
    Yu, H., Tay, C.Y., Leong, W.S., Tan, S.C., Liao, K., Tan, L.P.: Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation. Biochem. Biophys. Res. Commun. 393, 150–155 (2010)CrossRefGoogle Scholar
  82. 82.
    Zhao, J.W., Gao, Z.L., Mei, H., Li, Y.L., Wang, Y.: Differentiation of human mesenchymal stem cells: the potential mechanism for estrogen-induced preferential osteoblast versus adipocyte differentiation. Am. J. Med. Sci. 341, 460–468 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Naama Shoham
    • 1
  • Natan T. Shaked
    • 1
  • Dafna Benayahu
    • 2
  • Amit Gefen
    • 1
    Email author
  1. 1.Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations