Skip to main content

Extracellular Matrix Remodeling and Mechanical Stresses as Modulators of Adipose Tissue Metabolism and Inflammation

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 16))

Abstract

Adipose tissue depots experience a variety of physical stresses in the body. There is increasing evidence that these stresses elicit specific biological responses, and could play important roles in both physiological and pathological processes. In this chapter, we review recent studies investigating the potential mechanical influences arising from interactions between adipose cells and their extracellular matrix (ECM). We focus on cell–ECM interactions that govern adipocyte differentiation and maturation as well as those that could develop as adipocytes increase in size to store triglycerides in response to a positive energy balance. Hypertrophic enlargement of adipocytes often precedes fibrosis, inflammation, and metabolic alterations associated with an obese phenotype such as insulin resistance and hyperlipidemia. These changes in adipose tissue structure and function could be related via mechanisms involving mechanotransduction. Deposition of excess collagen fibers could stiffen the tissue, physically constraining the expandability of adipocytes. Additionally, cells may experience mechanical influences resulting from body movements. All of these could result in increased compression and/or tension on the adipocyte cellular membrane. Compelling in vitro data suggest that these stresses can activate classical mechanotransduction pathways in adipocytes and their precursor cells, notably the Rho-associated protein kinase (ROCK). Despite progress, many challenges remain in addressing mechanistic questions regarding the role of physiologically relevant mechanical influences in isolation from confounding biochemical influences present in vivo. In this regard, we expect engineered ECM and advanced bioreactors to serve as valuable model systems to dissect the effects of mechanical stresses under controlled chemical conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A.B., Kuo, F.C., Palmer, E.L., Tseng, Y.H., Doria, A., Kolodny, G.M., Kahn, C.R.: Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360(15), 1509–1517 (2009). doi:10.1056/NEJMoa0810780

    Article  Google Scholar 

  2. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J.M.: Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505), 425–432 (1994). doi:10.1038/372425a0

    Article  Google Scholar 

  3. Galic, S., Oakhill, J.S., Steinberg, G.R.: Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316(2), 129–139 (2010). doi:10.1016/j.mce.2009.08.018

    Article  Google Scholar 

  4. Sun, K., Kusminski, C.M., Scherer, P.E.: Adipose tissue remodeling and obesity. J. Clin. Investig. 121(6), 2094–2101 (2011). doi:10.1172/JCI45887

    Article  Google Scholar 

  5. Mariman, E.C., Wang, P.: Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life Sci. (CMLS) 67(8), 1277–1292 (2010). doi:10.1007/s00018-010-0263-4

    Article  Google Scholar 

  6. Pierleoni, C., Verdenelli, F., Castellucci, M., Cinti, S.: Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur. J. Histochem. (EJH) 42(3), 183–188 (1998)

    Google Scholar 

  7. Kong, P., Gonzalez-Quesada, C., Li, N., Cavalera, M., Lee, D.W., Frangogiannis, N.G.: Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am. J. Physiol. Endocrinol. Metab. 305(3), E439–E450 (2013). doi:10.1152/ajpendo.00006.2013

    Article  Google Scholar 

  8. Nie, J., Sage, E.H.: SPARC inhibits adipogenesis by its enhancement of beta-catenin signaling. J. Biol. Chem. 284(2), 1279–1290 (2009). doi:10.1074/jbc.M808285200

    Article  Google Scholar 

  9. Spalding, K.L., Arner, E., Westermark, P.O., Bernard, S., Buchholz, B.A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., Concha, H., Hassan, M., Ryden, M., Frisen, J., Arner, P.: Dynamics of fat cell turnover in humans. Nature 453(7196), 783–787 (2008). doi:10.1038/nature06902

    Article  Google Scholar 

  10. Rosen, E.D., Spiegelman, B.M.: Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16, 145–171 (2000). doi:10.1146/annurev.cellbio.16.1.145

    Article  Google Scholar 

  11. Arner, P., Bernard, S., Salehpour, M., Possnert, G., Liebl, J., Steier, P., Buchholz, B.A., Eriksson, M., Arner, E., Hauner, H., Skurk, T., Ryden, M., Frayn, K.N., Spalding, K.L.: Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478(7367), 110–113 (2011). doi:10.1038/nature10426

    Article  Google Scholar 

  12. Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., Sumner, A.E., Cushman, S.W., Periwal, V.: Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5(3), e1000324 (2009). doi:10.1371/journal.pcbi.1000324

    Article  Google Scholar 

  13. Khan, T., Muise, E.S., Iyengar, P., Wang, Z.V., Chandalia, M., Abate, N., Zhang, B.B., Bonaldo, P., Chua, S., Scherer, P.E.: Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29(6), 1575–1591 (2009). doi:10.1128/MCB.01300-08

    Article  Google Scholar 

  14. Bradshaw, A.D., Graves, D.C., Motamed, K., Sage, E.H.: SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc. Natl. Acad. Sci. U.S.A. 100(10), 6045–6050 (2003). doi:10.1073/pnas.1030790100

    Article  Google Scholar 

  15. Chun, T.H., Hotary, K.B., Sabeh, F., Saltiel, A.R., Allen, E.D., Weiss, S.J.: A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125(3), 577–591 (2006). doi:10.1016/j.cell.2006.02.050

    Article  Google Scholar 

  16. Chun, T.H., Inoue, M., Morisaki, H., Yamanaka, I., Miyamoto, Y., Okamura, T., Sato-Kusubata, K., Weiss, S.J.: Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 59(10), 2484–2494 (2010). doi:10.2337/db10-0073

    Article  Google Scholar 

  17. Alligier, M., Meugnier, E., Debard, C., Lambert-Porcheron, S., Chanseaume, E., Sothier, M., Loizon, E., Hssain, A.A., Brozek, J., Scoazec, J.Y., Morio, B., Vidal, H., Laville, M.: Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J. Clin. Endocrinol. Metab. 97(2), E183–E192 (2012). doi:10.1210/jc.2011-2314

    Article  Google Scholar 

  18. Wynn, T.A.: Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Investig. 117(3), 524–529 (2007). doi:10.1172/JCI31487

    Article  Google Scholar 

  19. Divoux, A., Tordjman, J., Lacasa, D., Veyrie, N., Hugol, D., Aissat, A., Basdevant, A., Guerre-Millo, M., Poitou, C., Zucker, J.D., Bedossa, P., Clement, K.: Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59(11), 2817–2825 (2010). doi:10.2337/db10-0585

    Article  Google Scholar 

  20. Shen, W.J., Yu, Z., Patel, S., Jue, D., Liu, L.F., Kraemer, F.B.: Hormone-sensitive lipase modulates adipose metabolism through PPARgamma. Biochim. Biophys. Acta 1811(1), 9–16 (2011). doi:10.1016/j.bbalip.2010.10.001

    Article  Google Scholar 

  21. Laurencikiene, J., Skurk, T., Kulyte, A., Heden, P., Astrom, G., Sjolin, E., Ryden, M., Hauner, H., Arner, P.: Regulation of lipolysis in small and large fat cells of the same subject. J. Clin. Endocrinol. Metab. 96(12), E2045–E2049 (2011). doi:10.1210/jc.2011-1702

    Article  Google Scholar 

  22. Mitrou, P., Boutati, E., Lambadiari, V., Maratou, E., Komesidou, V., Papakonstantinou, A., Sidossis, L., Tountas, N., Katsilambros, N., Economopoulos, T., Raptis, S.A., Dimitriadis, G.: Rates of lipid fluxes in adipose tissue in vivo after a mixed meal in morbid obesity. Int. J. Obes. 34(4), 770–774 (2010). doi:10.1038/ijo.2009.293

    Article  Google Scholar 

  23. Lumeng, C.N., Bodzin, J.L., Saltiel, A.R.: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 117(1), 175–184 (2007). doi:10.1172/JCI29881

    Article  Google Scholar 

  24. Lumeng, C.N., DelProposto, J.B., Westcott, D.J., Saltiel, A.R.: Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57(12), 3239–3246 (2008). doi:10.2337/db08-0872

    Article  Google Scholar 

  25. Nguyen, M.T., Favelyukis, S., Nguyen, A.K., Reichart, D., Scott, P.A., Jenn, A., Liu-Bryan, R., Glass, C.K., Neels, J.G., Olefsky, J.M.: A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282(48), 35279–35292 (2007). doi:10.1074/jbc.M706762200

    Article  Google Scholar 

  26. Kamei, N., Tobe, K., Suzuki, R., Ohsugi, M., Watanabe, T., Kubota, N., Ohtsuka-Kowatari, N., Kumagai, K., Sakamoto, K., Kobayashi, M., Yamauchi, T., Ueki, K., Oishi, Y., Nishimura, S., Manabe, I., Hashimoto, H., Ohnishi, Y., Ogata, H., Tokuyama, K., Tsunoda, M., Ide, T., Murakami, K., Nagai, R., Kadowaki, T.: Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281(36), 26602–26614 (2006). doi:10.1074/jbc.M601284200

    Article  Google Scholar 

  27. Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A.S., Obin, M.S.: Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46(11), 2347–2355 (2005). doi:10.1194/jlr.M500294-JLR200

    Article  Google Scholar 

  28. Strissel, K.J., Stancheva, Z., Miyoshi, H., Perfield 2nd, J.W., DeFuria, J., Jick, Z., Greenberg, A.S., Obin, M.S.: Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56(12), 2910–2918 (2007). doi:10.2337/db07-0767

    Article  Google Scholar 

  29. Feng, D., Tang, Y., Kwon, H., Zong, H., Hawkins, M., Kitsis, R.N., Pessin, J.E.: High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 60(8), 2134–2143 (2011). doi:10.2337/db10-1411

    Article  Google Scholar 

  30. Henegar, C., Tordjman, J., Achard, V., Lacasa, D., Cremer, I., Guerre-Millo, M., Poitou, C., Basdevant, A., Stich, V., Viguerie, N., Langin, D., Bedossa, P., Zucker, J.D., Clement, K.: Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 9(1), R14 (2008). doi:10.1186/gb-2008-9-1-r14

    Article  Google Scholar 

  31. Sbarbati, A., Osculati, F., Silvagni, D., Benati, D., Galie, M., Camoglio, F.S., Rigotti, G., Maffeis, C.: Obesity and inflammation: evidence for an elementary lesion. Pediatrics 117(1), 220–223 (2006). doi:10.1542/peds.2004-2854

    Article  Google Scholar 

  32. Kanzaki, M., Pessin, J.E.: Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J. Biol. Chem. 276(45), 42436–42444 (2001). doi:10.1074/jbc.M108297200

    Article  Google Scholar 

  33. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4), 483–495 (2004)

    Article  Google Scholar 

  34. Bannai, Y., Aminova, L.R., Faulkner, M.J., Ho, M., Wilson, B.A.: Rho/ROCK-dependent inhibition of 3T3-L1 adipogenesis by G-protein-deamidating dermonecrotic toxins: differential regulation of Notch1, Pref1/Dlk1, and beta-catenin signaling. Front. Cell. Infect. Microbiol. 2, 80 (2012). doi:10.3389/fcimb.2012.00080

    Article  Google Scholar 

  35. Noguchi, M., Hosoda, K., Fujikura, J., Fujimoto, M., Iwakura, H., Tomita, T., Ishii, T., Arai, N., Hirata, M., Ebihara, K., Masuzaki, H., Itoh, H., Narumiya, S., Nakao, K.: Genetic and pharmacological inhibition of Rho-associated kinase II enhances adipogenesis. J. Biol. Chem. 282(40), 29574–29583 (2007). doi:10.1074/jbc.M705972200

    Article  Google Scholar 

  36. Kanda, T., Wakino, S., Homma, K., Yoshioka, K., Tatematsu, S., Hasegawa, K., Takamatsu, I., Sugano, N., Hayashi, K., Saruta, T.: Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J. (official publication of the Federation of American Societies for Experimental Biology) 20(1), 169–171 (2006). doi:10.1096/fj.05-4197fje

    Google Scholar 

  37. Nakayama, Y., Komuro, R., Yamamoto, A., Miyata, Y., Tanaka, M., Matsuda, M., Fukuhara, A., Shimomura, I.: RhoA induces expression of inflammatory cytokine in adipocytes. Biochem. Biophys. Res. Commun. 379(2), 288–292 (2009). doi:10.1016/j.bbrc.2008.12.040

    Article  Google Scholar 

  38. Hara, Y., Wakino, S., Tanabe, Y., Saito, M., Tokuyama, H., Washida, N., Tatematsu, S., Yoshioka, K., Homma, K., Hasegawa, K., Minakuchi, H., Fujimura, K., Hosoya, K., Hayashi, K., Nakayama, K., Itoh, H.: Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch. Sci. Signal. 4 (157):ra3. doi: 10.1126/scisignal.2001227

  39. Gagnon, A., Yarmo, M.N., Landry, A., Sorisky, A.: Macrophages alter the differentiation-dependent decreases in fibronectin and collagen I/III protein levels in human preadipocytes. Lipids 47(9), 873–880 (2012). doi:10.1007/s11745-012-3696-8

    Article  Google Scholar 

  40. Aratani, Y., Kitagawa, Y.: Enhanced synthesis and secretion of type IV collagen and entactin during adipose conversion of 3T3-L1 cells and production of unorthodox laminin complex. J. Biol. Chem. 263(31), 16163–16169 (1988)

    Google Scholar 

  41. Nakajima, I., Muroya, S., Tanabe, R., Chikuni, K.: Extracellular matrix development during differentiation into adipocytes with a unique increase in type V and VI collagen. Biol. Cell (under the auspices of the European Cell Biology Organization) 94(3), 197–203 (2002)

    Article  Google Scholar 

  42. Nakajima, I., Yamaguchi, T., Ozutsumi, K., Aso, H.: Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differ.; Res. Biol. Divers. 63(4), 193–200 (1998). doi:10.1111/j.1432-0436.1998.00193.x

    Article  Google Scholar 

  43. Kilian, K.A., Bugarija, B., Lahn, B.T., Mrksich, M.: Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010). doi:10.1073/pnas.0903269107

    Article  Google Scholar 

  44. Schiller, Z.A., Schiele, N.R., Sims, J.K., Lee, K., Kuo, C.K.: Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro. Stem Cell Res. Ther. 4(4), 79 (2013). doi:10.1186/scrt230

    Article  Google Scholar 

  45. Lee, J., Abdeen, A.A., Zhang, D., Kilian, K.A.: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34(33), 8140–8148 (2013). doi:10.1016/j.biomaterials.2013.07.074

    Article  Google Scholar 

  46. Guvendiren, M., Burdick, J.A.: Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012). doi:10.1038/ncomms1792

    Article  Google Scholar 

  47. Young, D.A., Choi, Y.S., Engler, A.J., Christman, K.L.: Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34(34), 8581–8588 (2013). doi:10.1016/j.biomaterials.2013.07.103

    Article  Google Scholar 

  48. Shoham, N., Gefen, A.: Mechanotransduction in adipocytes. J. Biomech. 45(1), 1–8 (2012). doi:10.1016/j.jbiomech.2011.10.023

    Article  Google Scholar 

  49. Tanabe, Y., Koga, M., Saito, M., Matsunaga, Y., Nakayama, K.: Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J. Cell Sci. 117(Pt 16), 3605–3614 (2004). doi:10.1242/jcs.01207

    Article  Google Scholar 

  50. Turner, N.J., Jones, H.S., Davies, J.E., Canfield, A.E.: Cyclic stretch-induced TGFbeta1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem. Biophys. Res. Commun. 377(4), 1147–1151 (2008). doi:10.1016/j.bbrc.2008.10.131

    Article  Google Scholar 

  51. David, V., Martin, A., Lafage-Proust, M.H., Malaval, L., Peyroche, S., Jones, D.B., Vico, L., Guignandon, A.: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148(5), 2553–2562 (2007). doi:10.1210/en.2006-1704

    Article  Google Scholar 

  52. Sen, B., Xie, Z., Case, N., Ma, M., Rubin, C., Rubin, J.: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149(12), 6065–6075 (2008). doi:10.1210/en.2008-0687

    Article  Google Scholar 

  53. Case, N., Xie, Z., Sen, B., Styner, M., Zou, M., O’Conor, C., Horowitz, M., Rubin, J.: Mechanical activation of beta-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells. J. Orthop. Res. (official publication of the Orthopaedic Research Society) 28(11), 1531–1538 (2010). doi:10.1002/jor.21156

    Article  Google Scholar 

  54. Sen, B., Styner, M., Xie, Z., Case, N., Rubin, C.T., Rubin, J.: Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J. Biol. Chem. 284(50), 34607–34617 (2009). doi:10.1074/jbc.M109.039453

    Article  Google Scholar 

  55. Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., Rubin, J.: Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44(4), 593–599 (2011). doi:10.1016/j.jbiomech.2010.11.022

    Article  Google Scholar 

  56. Huang, S.C., Wu, T.C., Yu, H.C., Chen, M.R., Liu, C.M., Chiang, W.S., Lin, K.M.: Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC Cell Biol. 11, 18 (2010). doi:10.1186/1471-2121-11-18

    Article  Google Scholar 

  57. Shoham, N., Gottlieb, R., Sharabani-Yosef, O., Zaretsky, U., Benayahu, D., Gefen, A.: Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am. J. Physiol. Cell Physiol. 302(2), C429–C441 (2012). doi:10.1152/ajpcell.0. 0167.2011

    Article  Google Scholar 

  58. Levy, A., Enzer, S., Shoham, N., Zaretsky, U., Gefen, A.: Large, but not small sustained tensile strains stimulate adipogenesis in culture. Ann. Biomed. Eng. 40(5), 1052–1060 (2012). doi:10.1007/s10439-011-0496-x

    Article  Google Scholar 

  59. Hossain, M.G., Iwata, T., Mizusawa, N., Shima, S.W., Okutsu, T., Ishimoto, K., Yoshimoto, K.: Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARgamma2 and C/EBPalpha. J. Biosci. Bioeng. 109(3), 297–303 (2010). doi:10.1016/j.jbiosc.2009.09.003

    Article  Google Scholar 

  60. Tchoukalova, Y.D., Koutsari, C., Karpyak, M.V., Votruba, S.B., Wendland, E., Jensen, M.D.: Subcutaneous adipocyte size and body fat distribution. Am. J. Clin. Nutr. 87(1), 56–63 (2008)

    Google Scholar 

  61. Hirsch, J., Batchelor, B.: Adipose tissue cellularity in human obesity. Clin. Endocrinol. Metab. 5(2), 299–311 (1976)

    Article  Google Scholar 

  62. Schiele, N.R., Marturano, J.E., Kuo, C.K.: Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis. Curr. Opin. Biotechnol. 24(5), 834–840 (2013). doi:10.1016/j.copbio.2013.07.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyongbum Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, K., Kuo, C.K. (2013). Extracellular Matrix Remodeling and Mechanical Stresses as Modulators of Adipose Tissue Metabolism and Inflammation. In: Gefen, A., Benayahu, D. (eds) The Mechanobiology of Obesity and Related Diseases. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 16. Springer, Cham. https://doi.org/10.1007/8415_2013_172

Download citation

  • DOI: https://doi.org/10.1007/8415_2013_172

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09335-2

  • Online ISBN: 978-3-319-09336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics