Advertisement

Extracellular Matrix Remodeling and Mechanical Stresses as Modulators of Adipose Tissue Metabolism and Inflammation

  • Kyongbum LeeEmail author
  • Catherine K. Kuo
Chapter
  • 1.1k Downloads
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 16)

Abstract

Adipose tissue depots experience a variety of physical stresses in the body. There is increasing evidence that these stresses elicit specific biological responses, and could play important roles in both physiological and pathological processes. In this chapter, we review recent studies investigating the potential mechanical influences arising from interactions between adipose cells and their extracellular matrix (ECM). We focus on cell–ECM interactions that govern adipocyte differentiation and maturation as well as those that could develop as adipocytes increase in size to store triglycerides in response to a positive energy balance. Hypertrophic enlargement of adipocytes often precedes fibrosis, inflammation, and metabolic alterations associated with an obese phenotype such as insulin resistance and hyperlipidemia. These changes in adipose tissue structure and function could be related via mechanisms involving mechanotransduction. Deposition of excess collagen fibers could stiffen the tissue, physically constraining the expandability of adipocytes. Additionally, cells may experience mechanical influences resulting from body movements. All of these could result in increased compression and/or tension on the adipocyte cellular membrane. Compelling in vitro data suggest that these stresses can activate classical mechanotransduction pathways in adipocytes and their precursor cells, notably the Rho-associated protein kinase (ROCK). Despite progress, many challenges remain in addressing mechanistic questions regarding the role of physiologically relevant mechanical influences in isolation from confounding biochemical influences present in vivo. In this regard, we expect engineered ECM and advanced bioreactors to serve as valuable model systems to dissect the effects of mechanical stresses under controlled chemical conditions.

Keywords

Adipose Tissue White Adipose Tissue Adipogenic Differentiation Hormone Sensitive Lipase Rock Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A.B., Kuo, F.C., Palmer, E.L., Tseng, Y.H., Doria, A., Kolodny, G.M., Kahn, C.R.: Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360(15), 1509–1517 (2009). doi: 10.1056/NEJMoa0810780 CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J.M.: Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505), 425–432 (1994). doi: 10.1038/372425a0 CrossRefGoogle Scholar
  3. 3.
    Galic, S., Oakhill, J.S., Steinberg, G.R.: Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316(2), 129–139 (2010). doi: 10.1016/j.mce.2009.08.018 CrossRefGoogle Scholar
  4. 4.
    Sun, K., Kusminski, C.M., Scherer, P.E.: Adipose tissue remodeling and obesity. J. Clin. Investig. 121(6), 2094–2101 (2011). doi: 10.1172/JCI45887 CrossRefGoogle Scholar
  5. 5.
    Mariman, E.C., Wang, P.: Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life Sci. (CMLS) 67(8), 1277–1292 (2010). doi: 10.1007/s00018-010-0263-4 CrossRefGoogle Scholar
  6. 6.
    Pierleoni, C., Verdenelli, F., Castellucci, M., Cinti, S.: Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur. J. Histochem. (EJH) 42(3), 183–188 (1998)Google Scholar
  7. 7.
    Kong, P., Gonzalez-Quesada, C., Li, N., Cavalera, M., Lee, D.W., Frangogiannis, N.G.: Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am. J. Physiol. Endocrinol. Metab. 305(3), E439–E450 (2013). doi: 10.1152/ajpendo.00006.2013 CrossRefGoogle Scholar
  8. 8.
    Nie, J., Sage, E.H.: SPARC inhibits adipogenesis by its enhancement of beta-catenin signaling. J. Biol. Chem. 284(2), 1279–1290 (2009). doi: 10.1074/jbc.M808285200 CrossRefGoogle Scholar
  9. 9.
    Spalding, K.L., Arner, E., Westermark, P.O., Bernard, S., Buchholz, B.A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., Concha, H., Hassan, M., Ryden, M., Frisen, J., Arner, P.: Dynamics of fat cell turnover in humans. Nature 453(7196), 783–787 (2008). doi: 10.1038/nature06902 CrossRefGoogle Scholar
  10. 10.
    Rosen, E.D., Spiegelman, B.M.: Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16, 145–171 (2000). doi: 10.1146/annurev.cellbio.16.1.145 CrossRefGoogle Scholar
  11. 11.
    Arner, P., Bernard, S., Salehpour, M., Possnert, G., Liebl, J., Steier, P., Buchholz, B.A., Eriksson, M., Arner, E., Hauner, H., Skurk, T., Ryden, M., Frayn, K.N., Spalding, K.L.: Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478(7367), 110–113 (2011). doi: 10.1038/nature10426 CrossRefGoogle Scholar
  12. 12.
    Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., Sumner, A.E., Cushman, S.W., Periwal, V.: Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5(3), e1000324 (2009). doi: 10.1371/journal.pcbi.1000324 CrossRefGoogle Scholar
  13. 13.
    Khan, T., Muise, E.S., Iyengar, P., Wang, Z.V., Chandalia, M., Abate, N., Zhang, B.B., Bonaldo, P., Chua, S., Scherer, P.E.: Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29(6), 1575–1591 (2009). doi: 10.1128/MCB.01300-08 CrossRefGoogle Scholar
  14. 14.
    Bradshaw, A.D., Graves, D.C., Motamed, K., Sage, E.H.: SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc. Natl. Acad. Sci. U.S.A. 100(10), 6045–6050 (2003). doi: 10.1073/pnas.1030790100 CrossRefGoogle Scholar
  15. 15.
    Chun, T.H., Hotary, K.B., Sabeh, F., Saltiel, A.R., Allen, E.D., Weiss, S.J.: A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125(3), 577–591 (2006). doi: 10.1016/j.cell.2006.02.050 CrossRefGoogle Scholar
  16. 16.
    Chun, T.H., Inoue, M., Morisaki, H., Yamanaka, I., Miyamoto, Y., Okamura, T., Sato-Kusubata, K., Weiss, S.J.: Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 59(10), 2484–2494 (2010). doi: 10.2337/db10-0073 CrossRefGoogle Scholar
  17. 17.
    Alligier, M., Meugnier, E., Debard, C., Lambert-Porcheron, S., Chanseaume, E., Sothier, M., Loizon, E., Hssain, A.A., Brozek, J., Scoazec, J.Y., Morio, B., Vidal, H., Laville, M.: Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J. Clin. Endocrinol. Metab. 97(2), E183–E192 (2012). doi: 10.1210/jc.2011-2314 CrossRefGoogle Scholar
  18. 18.
    Wynn, T.A.: Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Investig. 117(3), 524–529 (2007). doi: 10.1172/JCI31487 CrossRefGoogle Scholar
  19. 19.
    Divoux, A., Tordjman, J., Lacasa, D., Veyrie, N., Hugol, D., Aissat, A., Basdevant, A., Guerre-Millo, M., Poitou, C., Zucker, J.D., Bedossa, P., Clement, K.: Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59(11), 2817–2825 (2010). doi: 10.2337/db10-0585 CrossRefGoogle Scholar
  20. 20.
    Shen, W.J., Yu, Z., Patel, S., Jue, D., Liu, L.F., Kraemer, F.B.: Hormone-sensitive lipase modulates adipose metabolism through PPARgamma. Biochim. Biophys. Acta 1811(1), 9–16 (2011). doi: 10.1016/j.bbalip.2010.10.001 CrossRefGoogle Scholar
  21. 21.
    Laurencikiene, J., Skurk, T., Kulyte, A., Heden, P., Astrom, G., Sjolin, E., Ryden, M., Hauner, H., Arner, P.: Regulation of lipolysis in small and large fat cells of the same subject. J. Clin. Endocrinol. Metab. 96(12), E2045–E2049 (2011). doi: 10.1210/jc.2011-1702 CrossRefGoogle Scholar
  22. 22.
    Mitrou, P., Boutati, E., Lambadiari, V., Maratou, E., Komesidou, V., Papakonstantinou, A., Sidossis, L., Tountas, N., Katsilambros, N., Economopoulos, T., Raptis, S.A., Dimitriadis, G.: Rates of lipid fluxes in adipose tissue in vivo after a mixed meal in morbid obesity. Int. J. Obes. 34(4), 770–774 (2010). doi: 10.1038/ijo.2009.293 CrossRefGoogle Scholar
  23. 23.
    Lumeng, C.N., Bodzin, J.L., Saltiel, A.R.: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 117(1), 175–184 (2007). doi: 10.1172/JCI29881 CrossRefGoogle Scholar
  24. 24.
    Lumeng, C.N., DelProposto, J.B., Westcott, D.J., Saltiel, A.R.: Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57(12), 3239–3246 (2008). doi: 10.2337/db08-0872 CrossRefGoogle Scholar
  25. 25.
    Nguyen, M.T., Favelyukis, S., Nguyen, A.K., Reichart, D., Scott, P.A., Jenn, A., Liu-Bryan, R., Glass, C.K., Neels, J.G., Olefsky, J.M.: A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282(48), 35279–35292 (2007). doi: 10.1074/jbc.M706762200 CrossRefGoogle Scholar
  26. 26.
    Kamei, N., Tobe, K., Suzuki, R., Ohsugi, M., Watanabe, T., Kubota, N., Ohtsuka-Kowatari, N., Kumagai, K., Sakamoto, K., Kobayashi, M., Yamauchi, T., Ueki, K., Oishi, Y., Nishimura, S., Manabe, I., Hashimoto, H., Ohnishi, Y., Ogata, H., Tokuyama, K., Tsunoda, M., Ide, T., Murakami, K., Nagai, R., Kadowaki, T.: Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281(36), 26602–26614 (2006). doi: 10.1074/jbc.M601284200 CrossRefGoogle Scholar
  27. 27.
    Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A.S., Obin, M.S.: Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46(11), 2347–2355 (2005). doi: 10.1194/jlr.M500294-JLR200 CrossRefGoogle Scholar
  28. 28.
    Strissel, K.J., Stancheva, Z., Miyoshi, H., Perfield 2nd, J.W., DeFuria, J., Jick, Z., Greenberg, A.S., Obin, M.S.: Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56(12), 2910–2918 (2007). doi: 10.2337/db07-0767 CrossRefGoogle Scholar
  29. 29.
    Feng, D., Tang, Y., Kwon, H., Zong, H., Hawkins, M., Kitsis, R.N., Pessin, J.E.: High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 60(8), 2134–2143 (2011). doi: 10.2337/db10-1411 CrossRefGoogle Scholar
  30. 30.
    Henegar, C., Tordjman, J., Achard, V., Lacasa, D., Cremer, I., Guerre-Millo, M., Poitou, C., Basdevant, A., Stich, V., Viguerie, N., Langin, D., Bedossa, P., Zucker, J.D., Clement, K.: Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 9(1), R14 (2008). doi: 10.1186/gb-2008-9-1-r14 CrossRefGoogle Scholar
  31. 31.
    Sbarbati, A., Osculati, F., Silvagni, D., Benati, D., Galie, M., Camoglio, F.S., Rigotti, G., Maffeis, C.: Obesity and inflammation: evidence for an elementary lesion. Pediatrics 117(1), 220–223 (2006). doi: 10.1542/peds.2004-2854 CrossRefGoogle Scholar
  32. 32.
    Kanzaki, M., Pessin, J.E.: Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J. Biol. Chem. 276(45), 42436–42444 (2001). doi: 10.1074/jbc.M108297200 CrossRefGoogle Scholar
  33. 33.
    McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4), 483–495 (2004)CrossRefGoogle Scholar
  34. 34.
    Bannai, Y., Aminova, L.R., Faulkner, M.J., Ho, M., Wilson, B.A.: Rho/ROCK-dependent inhibition of 3T3-L1 adipogenesis by G-protein-deamidating dermonecrotic toxins: differential regulation of Notch1, Pref1/Dlk1, and beta-catenin signaling. Front. Cell. Infect. Microbiol. 2, 80 (2012). doi: 10.3389/fcimb.2012.00080 CrossRefGoogle Scholar
  35. 35.
    Noguchi, M., Hosoda, K., Fujikura, J., Fujimoto, M., Iwakura, H., Tomita, T., Ishii, T., Arai, N., Hirata, M., Ebihara, K., Masuzaki, H., Itoh, H., Narumiya, S., Nakao, K.: Genetic and pharmacological inhibition of Rho-associated kinase II enhances adipogenesis. J. Biol. Chem. 282(40), 29574–29583 (2007). doi: 10.1074/jbc.M705972200 CrossRefGoogle Scholar
  36. 36.
    Kanda, T., Wakino, S., Homma, K., Yoshioka, K., Tatematsu, S., Hasegawa, K., Takamatsu, I., Sugano, N., Hayashi, K., Saruta, T.: Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J. (official publication of the Federation of American Societies for Experimental Biology) 20(1), 169–171 (2006). doi: 10.1096/fj.05-4197fje Google Scholar
  37. 37.
    Nakayama, Y., Komuro, R., Yamamoto, A., Miyata, Y., Tanaka, M., Matsuda, M., Fukuhara, A., Shimomura, I.: RhoA induces expression of inflammatory cytokine in adipocytes. Biochem. Biophys. Res. Commun. 379(2), 288–292 (2009). doi: 10.1016/j.bbrc.2008.12.040 CrossRefGoogle Scholar
  38. 38.
    Hara, Y., Wakino, S., Tanabe, Y., Saito, M., Tokuyama, H., Washida, N., Tatematsu, S., Yoshioka, K., Homma, K., Hasegawa, K., Minakuchi, H., Fujimura, K., Hosoya, K., Hayashi, K., Nakayama, K., Itoh, H.: Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch. Sci. Signal. 4 (157):ra3. doi:  10.1126/scisignal.2001227
  39. 39.
    Gagnon, A., Yarmo, M.N., Landry, A., Sorisky, A.: Macrophages alter the differentiation-dependent decreases in fibronectin and collagen I/III protein levels in human preadipocytes. Lipids 47(9), 873–880 (2012). doi: 10.1007/s11745-012-3696-8 CrossRefGoogle Scholar
  40. 40.
    Aratani, Y., Kitagawa, Y.: Enhanced synthesis and secretion of type IV collagen and entactin during adipose conversion of 3T3-L1 cells and production of unorthodox laminin complex. J. Biol. Chem. 263(31), 16163–16169 (1988)Google Scholar
  41. 41.
    Nakajima, I., Muroya, S., Tanabe, R., Chikuni, K.: Extracellular matrix development during differentiation into adipocytes with a unique increase in type V and VI collagen. Biol. Cell (under the auspices of the European Cell Biology Organization) 94(3), 197–203 (2002)CrossRefGoogle Scholar
  42. 42.
    Nakajima, I., Yamaguchi, T., Ozutsumi, K., Aso, H.: Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differ.; Res. Biol. Divers. 63(4), 193–200 (1998). doi: 10.1111/j.1432-0436.1998.00193.x CrossRefGoogle Scholar
  43. 43.
    Kilian, K.A., Bugarija, B., Lahn, B.T., Mrksich, M.: Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010). doi: 10.1073/pnas.0903269107 CrossRefGoogle Scholar
  44. 44.
    Schiller, Z.A., Schiele, N.R., Sims, J.K., Lee, K., Kuo, C.K.: Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro. Stem Cell Res. Ther. 4(4), 79 (2013). doi: 10.1186/scrt230 CrossRefGoogle Scholar
  45. 45.
    Lee, J., Abdeen, A.A., Zhang, D., Kilian, K.A.: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34(33), 8140–8148 (2013). doi: 10.1016/j.biomaterials.2013.07.074 CrossRefGoogle Scholar
  46. 46.
    Guvendiren, M., Burdick, J.A.: Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012). doi: 10.1038/ncomms1792 CrossRefGoogle Scholar
  47. 47.
    Young, D.A., Choi, Y.S., Engler, A.J., Christman, K.L.: Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34(34), 8581–8588 (2013). doi: 10.1016/j.biomaterials.2013.07.103 CrossRefGoogle Scholar
  48. 48.
    Shoham, N., Gefen, A.: Mechanotransduction in adipocytes. J. Biomech. 45(1), 1–8 (2012). doi: 10.1016/j.jbiomech.2011.10.023 CrossRefGoogle Scholar
  49. 49.
    Tanabe, Y., Koga, M., Saito, M., Matsunaga, Y., Nakayama, K.: Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J. Cell Sci. 117(Pt 16), 3605–3614 (2004). doi: 10.1242/jcs.01207 CrossRefGoogle Scholar
  50. 50.
    Turner, N.J., Jones, H.S., Davies, J.E., Canfield, A.E.: Cyclic stretch-induced TGFbeta1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem. Biophys. Res. Commun. 377(4), 1147–1151 (2008). doi: 10.1016/j.bbrc.2008.10.131 CrossRefGoogle Scholar
  51. 51.
    David, V., Martin, A., Lafage-Proust, M.H., Malaval, L., Peyroche, S., Jones, D.B., Vico, L., Guignandon, A.: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148(5), 2553–2562 (2007). doi: 10.1210/en.2006-1704 CrossRefGoogle Scholar
  52. 52.
    Sen, B., Xie, Z., Case, N., Ma, M., Rubin, C., Rubin, J.: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149(12), 6065–6075 (2008). doi: 10.1210/en.2008-0687 CrossRefGoogle Scholar
  53. 53.
    Case, N., Xie, Z., Sen, B., Styner, M., Zou, M., O’Conor, C., Horowitz, M., Rubin, J.: Mechanical activation of beta-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells. J. Orthop. Res. (official publication of the Orthopaedic Research Society) 28(11), 1531–1538 (2010). doi: 10.1002/jor.21156 CrossRefGoogle Scholar
  54. 54.
    Sen, B., Styner, M., Xie, Z., Case, N., Rubin, C.T., Rubin, J.: Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J. Biol. Chem. 284(50), 34607–34617 (2009). doi: 10.1074/jbc.M109.039453 CrossRefGoogle Scholar
  55. 55.
    Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., Rubin, J.: Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44(4), 593–599 (2011). doi: 10.1016/j.jbiomech.2010.11.022 CrossRefGoogle Scholar
  56. 56.
    Huang, S.C., Wu, T.C., Yu, H.C., Chen, M.R., Liu, C.M., Chiang, W.S., Lin, K.M.: Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC Cell Biol. 11, 18 (2010). doi: 10.1186/1471-2121-11-18 CrossRefGoogle Scholar
  57. 57.
    Shoham, N., Gottlieb, R., Sharabani-Yosef, O., Zaretsky, U., Benayahu, D., Gefen, A.: Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am. J. Physiol. Cell Physiol. 302(2), C429–C441 (2012). doi: 10.1152/ajpcell.0. 0167.2011CrossRefGoogle Scholar
  58. 58.
    Levy, A., Enzer, S., Shoham, N., Zaretsky, U., Gefen, A.: Large, but not small sustained tensile strains stimulate adipogenesis in culture. Ann. Biomed. Eng. 40(5), 1052–1060 (2012). doi: 10.1007/s10439-011-0496-x CrossRefGoogle Scholar
  59. 59.
    Hossain, M.G., Iwata, T., Mizusawa, N., Shima, S.W., Okutsu, T., Ishimoto, K., Yoshimoto, K.: Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARgamma2 and C/EBPalpha. J. Biosci. Bioeng. 109(3), 297–303 (2010). doi: 10.1016/j.jbiosc.2009.09.003 CrossRefGoogle Scholar
  60. 60.
    Tchoukalova, Y.D., Koutsari, C., Karpyak, M.V., Votruba, S.B., Wendland, E., Jensen, M.D.: Subcutaneous adipocyte size and body fat distribution. Am. J. Clin. Nutr. 87(1), 56–63 (2008)Google Scholar
  61. 61.
    Hirsch, J., Batchelor, B.: Adipose tissue cellularity in human obesity. Clin. Endocrinol. Metab. 5(2), 299–311 (1976)CrossRefGoogle Scholar
  62. 62.
    Schiele, N.R., Marturano, J.E., Kuo, C.K.: Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis. Curr. Opin. Biotechnol. 24(5), 834–840 (2013). doi: 10.1016/j.copbio.2013.07.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringTufts UniversityMedfordUSA
  2. 2.Department of Biomedical EngineeringTufts UniversityMedfordUSA
  3. 3.Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical SciencesTufts University School of MedicineBostonUSA

Personalised recommendations