Advertisement

Role of Adipose Cells in Tumor Microenvironment

  • Tao Zhang
  • Mikhail G. KoloninEmail author
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 16)

Abstract

As the obesity epidemic escalates, the resistance of adipose tissue to dietary and pharmacological interventions remains a challenge. Adipose tissue overgrowth and dysfunction is associated with the metabolic syndrome, many cancers and certain non-malignant fibrotic conditions. The complexity of systemic and local changes accompanying adipose tissue remodeling in disease has made it difficult to identify the cellular and molecular culprits in this pathological link. Nevertheless, recent efforts in clinical research and animal models have uncovered the roles of individual adipose cell populations and molecules secreted by them in obesity and the associated disorders. This chapter will address the role of adipose stromal cells and adipocytes recruited by tumors in cancer progression. Specifically, it will introduce inflammatory factors and other adipokines as the key players in adipose tissue and in tumor microenvironment. Discussion of adipose cell roles in immunomodulation, vascularization, matrix remodeling and metabolism will be followed by prospects in identification of signaling responsible for adipose cell trafficking and in ex vivo modeling of adipose tissue. Better understanding of adipose tissue mechanobiology in the context of disease will help define adipose cells populations as potential therapy targets.

Keywords

Hepatocyte Growth Factor Tumor Microenvironment White Adipose Tissue Stromal Vascular Fraction Adipose Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wisse, B.E., Kim, F., et al.: Physiology. An integrative view of obesity. Science 318, 928–929 (2007)Google Scholar
  2. 2.
    Sun, K., Kusminski, C.M., et al.: Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011)Google Scholar
  3. 3.
    Calle, E.E., Kaaks, R.: Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004)Google Scholar
  4. 4.
    Eheman, C., Henley, S.J., et al.: Annual Report to the nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer 118, 2338–2366 (2012)Google Scholar
  5. 5.
    Boeing, H.: Obesity and cancer—the update 2013. Best Pract. Res. Clin. Endocrinol. Metab. 27, 219–227 (2013)Google Scholar
  6. 6.
    Masaki, T., Yoshimatsu, H.: Obesity, adipocytokines and cancer. Transl. Oncogenomics 3, 45–52 (2008)Google Scholar
  7. 7.
    Renehan, A.G., Tyson, M., et al.: Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008)Google Scholar
  8. 8.
    Flegal, K.M., Graubard, B.I., et al.: Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298, 2028–2037 (2007)Google Scholar
  9. 9.
    Khandekar, M.J., Cohen, P., et al.: Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 11, 886–895 (2011)Google Scholar
  10. 10.
    Roberts, D.L., Dive, C., et al.: Biological mechanisms linking obesity and cancer risk: new perspectives. Annu. Rev. Med. 61, 301–316 (2010)Google Scholar
  11. 11.
    Schottenfeld, D., Beebe-Dimmer, J.L.: Advances in cancer epidemiology: understanding causal mechanisms and the evidence for implementing interventions. Annu. Rev. Public Health 26, 37–60 (2005) Google Scholar
  12. 12.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)Google Scholar
  13. 13.
    Kolonin, M.G., Evans, K.W., et al.: Alternative origins of stroma in normal organs and disease. Stem Cell Res. 8, 312–323 (2012)Google Scholar
  14. 14.
    Kaplan, R.N., Riba, R.D., et al.: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005)Google Scholar
  15. 15.
    Gao, D., Nolan, D.J., et al.: Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008)Google Scholar
  16. 16.
    Lyden, D., Hattori, K., et al.: Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001)Google Scholar
  17. 17.
    Zhang, Y., Bellows, C.F., et al.: Adipose tissue-derived progenitor cells and cancer. World J. Stem Cells 2, 103–113 (2010)zbMATHGoogle Scholar
  18. 18.
    Sirin, O., Kolonin, M.G.: Treatment of obesity as a potential complementary approach to cancer therapy. Drug Discovery Today 11, 567–573 (2013)Google Scholar
  19. 19.
    Friedman, J.M.: Obesity: causes and control of excess body fat. Nature 459, 340–342 (2009)Google Scholar
  20. 20.
    Rosen, E.D., Spiegelman, B.M.: Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006)Google Scholar
  21. 21.
    Ducharme, N.A., Bickel, P.E.: Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942–949 (2008)Google Scholar
  22. 22.
    Zuk, P.A., Zhu, M., et al.: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001)Google Scholar
  23. 23.
    Traktuev, D., Merfeld-Clauss, S., et al.: A Population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102, 77–85 (2008)Google Scholar
  24. 24.
    Daquinag, A.C., Zhang, Y., et al.: Vascular targeting of adipose tissue as an anti-obesity approach. Trends Pharmacol. Sci. 32, 300–307 (2011)Google Scholar
  25. 25.
    Gimble, J.M., Katz, A.J., et al.: Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249–1260 (2007)Google Scholar
  26. 26.
    Spalding, K.L., Arner, E., et al.: Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008)Google Scholar
  27. 27.
    Kras, K.M., Hausman, D.B., et al.: Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes. Res. 7, 491–497 (1999)Google Scholar
  28. 28.
    Baillargeon, J., Rose, D.P.: Obesity, adipokines, and prostate cancer. Int. J. Oncol. 28, 737–745 (2006)Google Scholar
  29. 29.
    Park, J., Euhus, D.M., et al.: Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr. Rev. 32, 550–570 (2011)Google Scholar
  30. 30.
    Martin-Padura, I., Gregato, G., et al.: The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34 + progenitors able to promote cancer progression. Cancer Res. 72, 325–334 (2012)Google Scholar
  31. 31.
    Orecchioni, S., Gregato, G., et al.: Complementary populations of human adipose CD34 + progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 73, 5880–5891 (2013)Google Scholar
  32. 32.
    Zhang, Y., Daquinag, A., et al.: White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 69, 5259–5266 (2009)Google Scholar
  33. 33.
    Zhang, Y., Daquinag, A.C., et al.: Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 72, 5198–5208 (2012)Google Scholar
  34. 34.
    Karnoub, A.E., Dash, A.B., et al.: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007)Google Scholar
  35. 35.
    Thiery, J.P., Acloque, H., et al.: Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009)Google Scholar
  36. 36.
    Shojaei, F., Zhong, C., et al.: Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol. 18, 372–378 (2008)Google Scholar
  37. 37.
    Folkman, J.: Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006)Google Scholar
  38. 38.
    Wels, J., Kaplan, R.N., et al.: Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 22, 559–574 (2008)Google Scholar
  39. 39.
    Dvorak, H.F.: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986)Google Scholar
  40. 40.
    Fukumura, D., Xavier, R., et al.: Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998)Google Scholar
  41. 41.
    Bissell, M.J., Radisky, D.: Putting tumours in context. Nat. Rev. Cancer 1, 46–54 (2001)Google Scholar
  42. 42.
    Coussens, L.M., Werb, Z.: Inflammation and cancer. Nature 420, 860–867 (2002)Google Scholar
  43. 43.
    Dawson, M.R., Chae, S.S., et al.: Direct evidence for lineage-dependent effects of bone marrow stromal cells on tumor progression. Am. J. Cancer Res. 1, 144–154 (2011)Google Scholar
  44. 44.
    Chantrain, C.F., Feron, O., et al.: Bone marrow microenvironment and tumor progression. Cancer Microenviron. 1, 23–35 (2008)Google Scholar
  45. 45.
    Bhowmick, N.A., Neilson, E.G., et al.: Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004)Google Scholar
  46. 46.
    Ribeiro, R.J., Monteiro, C.P., et al.: Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell. Physiol. Biochem. 29, 233–240 (2012)Google Scholar
  47. 47.
    Klopp, A.H., Zhang, Y., et al.: Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin. Cancer Res. 18, 771–782 (2012)Google Scholar
  48. 48.
    Paz-Filho, G., Lim, E.L., et al.: Associations between adipokines and obesity-related cancer. Front. Biosci. 16, 1634–1650 (2011)Google Scholar
  49. 49.
    Gelsinger, C., Tschoner, A., et al.: Adipokine update—new molecules, new functions. Wien. Med. Wochenschr. 160, 377–390 (2010)Google Scholar
  50. 50.
    King, B., Jiang, Y., et al.: Weight control, endocrine hormones and cancer prevention. Exp. Biol. Med. (Maywood) 238, 502–508 (2013)Google Scholar
  51. 51.
    Vansaun, M.N.: Molecular pathways: adiponectin and leptin signaling in cancer. Clin. Cancer Res. 19, 1926–1932 (2013)Google Scholar
  52. 52.
    Sahu, A.: Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Front. Neuroendocrinol. 24, 225–253 (2003)Google Scholar
  53. 53.
    Grossmann, M.E., Ray, A., et al.: Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev. 29, 641–653 (2010)Google Scholar
  54. 54.
    Sierra-Honigmann, M.R., Nath, A.K., et al.: Biological action of leptin as an angiogenic factor. Science 281, 1683–1686 (1998)Google Scholar
  55. 55.
    Chang, S., Hursting, S.D., et al.: Leptin and prostate cancer. Prostate 46, 62–67 (2001)Google Scholar
  56. 56.
    Caldefie-Chezet, F., Dubois, V., et al.: Leptin: involvement in the pathophysiology of breast cancer. Ann. Endocrinol. (Paris) 74, 90–101 (2013)Google Scholar
  57. 57.
    Fontana, L., Eagon, J.C., et al.: Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56, 1010–1013 (2007)Google Scholar
  58. 58.
    Ahima, R.S., Lazar, M.A.: Adipokines and the peripheral and neural control of energy balance. Mol. Endocrinol. 22, 1023–1031 (2008)Google Scholar
  59. 59.
    Kadowaki, T., Yamauchi, T., et al.: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792 (2006)Google Scholar
  60. 60.
    Lopez Fontana, C.M., Maselli Artola, M.E., et al.: Influence of leptin and adiponectin on prostate cancer. Arch Esp Urol. 62, 103–108 (2009)Google Scholar
  61. 61.
    Brakenhielm, E., Veitonmaki, N., et al.: Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl. Acad. Sci. U.S.A. 101, 2476–2481 (2004)Google Scholar
  62. 62.
    Hamaguchi, K., Itabashi, A., et al.: Analysis of adipose tissues and stromal vascular cells in a murine arthritis model. Metabolism 61, 1687–1695 (2012)Google Scholar
  63. 63.
    Ghosh, S., Ashcraft, K.: An IL-6 link between obesity and cancer. Front. Biosci. 5, 461–478 (2013)Google Scholar
  64. 64.
    Rose-John, S.: Coordination of interleukin-6 biology by membrane bound and soluble receptors. Adv. Exp. Med. Biol. 495, 145–151 (2001)Google Scholar
  65. 65.
    Turkson, J., Jove, R.: STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19, 6613–6626 (2000)Google Scholar
  66. 66.
    Mora, L.B., Buettner, R., et al.: Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res. 62, 6659–6666 (2002)Google Scholar
  67. 67.
    Abdulghani, J., Gu, L., et al.: Stat3 promotes metastatic progression of prostate cancer. Am. J. Pathol. 172, 1717–1728 (2008)Google Scholar
  68. 68.
    Cawthorn, W.P., Sethi, J.K.: TNF-alpha and adipocyte biology. FEBS Lett. 582, 117–131 (2008)Google Scholar
  69. 69.
    Hillenbrand, A., Fassler, J., et al.: Changed adipocytokine concentrations in colorectal tumor patients and morbidly obese patients compared to healthy controls. BMC Cancer 12, 545 (2012)Google Scholar
  70. 70.
    Raucci, R., Rusolo, F., et al.: Functional and structural features of adipokine family. Cytokine 61, 1–14 (2013)Google Scholar
  71. 71.
    Jee, S.H., Chu, C.Y., et al.: Interleukin-6 induced basic fibroblast growth factor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and PI3-kinase/Akt pathways. J. Invest. Dermatol. 123, 1169–1175 (2004)Google Scholar
  72. 72.
    Anzo, M., Cobb, L.J., et al.: Targeted deletion of hepatic Igf1 in TRAMP mice leads to dramatic alterations in the circulating insulin-like growth factor axis but does not reduce tumor progression. Cancer Res. 68, 3342–3349 (2008)Google Scholar
  73. 73.
    Bertolini, F., Lohsiriwat, V., et al.: Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons. Biochim. Biophys. Acta 1826, 209–214 (2012)Google Scholar
  74. 74.
    van Kruijsdijk, R.C., van der Wall, E., et al.: Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol. Biomark. Prev. 18, 2569–2578 (2009)Google Scholar
  75. 75.
    Hevener, A.L., Febbraio, M.A.: The 2009 stock conference report: inflammation, obesity and metabolic disease. Obes. Rev. 11, 635–644 (2010)Google Scholar
  76. 76.
    Michigan, A., Johnson, T.V., et al.: Preoperative C-reactive protein level adjusted for comorbidities and lifestyle factors predicts overall mortality in localized renal cell carcinoma. Mol. Diagn. Ther. 15, 229–234 (2011)Google Scholar
  77. 77.
    Friedenreich, C.M., Langley, A.R., et al.: Case-control study of inflammatory markers and the risk of endometrial cancer. Eur. J. Cancer Prev. 22, 374–379 (2013)Google Scholar
  78. 78.
    Bailey, A.S., Willenbring, H., et al.: Myeloid lineage progenitors give rise to vascular endothelium. Proc. Natl. Acad. Sci. U.S.A. 103, 13156–13161 (2006)Google Scholar
  79. 79.
    Weisberg, S.P., McCann, D., et al.: Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003)Google Scholar
  80. 80.
    Arendt, L.M., McCready, J., et al.: Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 73, 6080–6093 (2013)Google Scholar
  81. 81.
    Jones, B.J., McTaggart, S.J.: Immunosuppression by mesenchymal stromal cells: from culture to clinic. Exp. Hematol. 36, 733–741 (2008)Google Scholar
  82. 82.
    Fidler, I.J., Ellis, L.M.: The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79, 185–188 (1994)Google Scholar
  83. 83.
    Cao, Y.: Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat. Rev. Drug Discovery 9, 107–115 (2010)Google Scholar
  84. 84.
    Vona-Davis, L., Rose, D.P.: Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr. Relat. Cancer 14, 189–206 (2007)Google Scholar
  85. 85.
    Resi, V., Basu, S., et al.: Molecular inflammation and adipose tissue matrix remodeling precede physiological adaptations to pregnancy. Am. J. Physiol. Endocrinol. Metab. 303, E832–E840 (2012)Google Scholar
  86. 86.
    Delort, L., Lequeux, C., et al.: Reciprocal interactions between breast tumor and its adipose microenvironment based on a 3D adipose equivalent model. PLoS ONE 8, e66284 (2013)Google Scholar
  87. 87.
    Lin, G., Yang, R., et al.: Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate 70, 1066–1073 (2010)Google Scholar
  88. 88.
    Gupta, R.K., Mepani, R.J., et al.: Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 15, 230–239 (2012)Google Scholar
  89. 89.
    Ando, S., Catalano, S.: The multifactorial role of leptin in driving the breast cancer microenvironment. Nat. Rev. Endocrinol. 8, 263–275 (2012)Google Scholar
  90. 90.
    Goodwin, P.J., Ennis, M., et al.: Is leptin a mediator of adverse prognostic effects of obesity in breast cancer? J. Clin. Oncol. 23, 6037–6042 (2005)Google Scholar
  91. 91.
    Hausman, G.J., Richardson, R.L.: Adipose tissue angiogenesis. J. Anim. Sci. 82, 925–934 (2004)Google Scholar
  92. 92.
    Fukumura, D., Ushiyama, A., et al.: Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ. Res. 93, e88–e97 (2003)Google Scholar
  93. 93.
    Saiki, A., Watanabe, F., et al.: Hepatocyte growth factor secreted by cultured adipocytes promotes tube formation of vascular endothelial cells in vitro. Int. J. Obes. (Lond) 30, 1676–1684 (2006)Google Scholar
  94. 94.
    Zhu, M., Zhou, Z., et al.: Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann. Plast. Surg. 64, 222–228 (2010)Google Scholar
  95. 95.
    Manneras-Holm, L., Krook, A.: Targeting adipose tissue angiogenesis to enhance insulin sensitivity. Diabetologia 55, 2562–2564 (2012)Google Scholar
  96. 96.
    Park, J., Scherer, P.E.: Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012)Google Scholar
  97. 97.
    Kos, K., Harte, A.L., et al.: Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass. Am. J. Physiol. Endocrinol. Metab. 293, E1335–E1340 (2007)Google Scholar
  98. 98.
    Sarkanen, J.R., Kaila, V., et al.: Human adipose tissue extract induces angiogenesis and adipogenesis in vitro. Tissue Eng. Part A 18, 17–25 (2012)Google Scholar
  99. 99.
    Matsuzawa, Y.: The metabolic syndrome and adipocytokines. FEBS Lett. 580, 2917–2921 (2006)Google Scholar
  100. 100.
    Samad, F., Pandey, M., et al.: Tissue factor gene expression in the adipose tissues of obese mice. Proc. Natl. Acad. Sci. U.S.A. 95, 7591–7596 (1998)Google Scholar
  101. 101.
    Bell, L.N., Cai, L., et al.: A central role for hepatocyte growth factor in adipose tissue angiogenesis. Am. J. Physiol. Endocrinol. Metab. 294, E336–E344 (2008)Google Scholar
  102. 102.
    Huang, S.P., Hsu, C.C., et al.: Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann. Plast. Surg. 69, 656–662 (2012)Google Scholar
  103. 103.
    Xu, F., Burk, D., et al.: Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1-/- mice. Endocrinology 153, 1706–1716 (2012)Google Scholar
  104. 104.
    Radisky, D.C., Kenny, P.A., et al.: Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J. Cell. Biochem. 101, 830–839 (2007)Google Scholar
  105. 105.
    Chandler, E.M., Seo, B.R., et al.: Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proc. Natl. Acad. Sci. U.S.A. 109, 9786–9791 (2012)Google Scholar
  106. 106.
    Weitzman, J.B., Pasqualini, R., et al.: The function and distinctive regulation of the integrin VLA-3 in cell adhesion, spreading, and homotypic cell aggregation. J. Biol. Chem. 268, 8651–8657 (1993)Google Scholar
  107. 107.
    Coussens, L.M., Fingleton, B., et al.: Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002)Google Scholar
  108. 108.
    Nie, J., Chang, B., et al.: Combinatorial peptides identify α5β1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem Cells 26, 2735–2745 (2008)Google Scholar
  109. 109.
    Fiedler, L.R., Schonherr, E., et al.: Decorin regulates endothelial cell motility on collagen I through activation of insulin-like growth factor I receptor and modulation of alpha2beta1 integrin activity. J. Biol. Chem. 283, 17406–17415 (2008)Google Scholar
  110. 110.
    Daquinag, A.C., Zhang, Y., et al.: An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 9, 74–86 (2011)Google Scholar
  111. 111.
    Wagner, W., Wein, F., et al.: Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33, 1402–1416 (2005)Google Scholar
  112. 112.
    Bochet, L., Lehuede, C., et al.: Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013)Google Scholar
  113. 113.
    Iyengar, P., Espina, V., et al.: Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest. 115, 1163–1176 (2005)Google Scholar
  114. 114.
    Khan, T., Muise, E.S., et al.: Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009)Google Scholar
  115. 115.
    Bouloumie, A., Sengenes, C., et al.: Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 50, 2080–2086 (2001)Google Scholar
  116. 116.
    Andarawewa, K.L., Motrescu, E.R., et al.: Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 65, 10862–10871 (2005)Google Scholar
  117. 117.
    Price, R.S., Cavazos, D.A., et al.: Obesity-related systemic factors promote an invasive phenotype in prostate cancer cells. Prostate Cancer Prostatic Dis. 15, 135–143 (2012)Google Scholar
  118. 118.
    Park, Y.M., Yoo, S.H., et al.: Adipose-derived Stem Cells Induced EMT-like Changes in H358 Lung Cancer Cells. Anticancer Res. 33, 4421–4430 (2013)Google Scholar
  119. 119.
    Hu, J., Liu, Z., et al.: Does TP53 mutation promote ovarian cancer metastasis to omentum by regulating lipid metabolism? Med. Hypotheses 81, 515–520 (2013)Google Scholar
  120. 120.
    Allott, E.H., Morine, M.J., et al.: Elevated tumor expression of PAI-1 and SNAI2 in obese esophageal adenocarcinoma patients and impact on prognosis. Clin. Transl. Gastroenterol 3, e12 (2012)Google Scholar
  121. 121.
    Vander Heiden, M.G., Cantley, L.C., et al.: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)Google Scholar
  122. 122.
    Levine, A.J., Puzio-Kuter, A.M.: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340–1344 (2010)Google Scholar
  123. 123.
    Wu, W., Zhao, S.: Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim. Biophys. Sin. (Shanghai) 45, 18–26 (2013)MathSciNetGoogle Scholar
  124. 124.
    Pavlides, S., Whitaker-Menezes, D., et al.: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009)Google Scholar
  125. 125.
    Young, C.D., Anderson, S.M.: Sugar and fat—that’s where it’s at: metabolic changes in tumors. Breast Cancer Res. 10, 202 (2008)Google Scholar
  126. 126.
    Yang, Y.A., Han, W.F., et al.: Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp. Cell Res. 279, 80–90 (2002)Google Scholar
  127. 127.
    Arner, P.: Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract. Res. Clin. Endocrinol. Metab. 19, 471–482 (2005)Google Scholar
  128. 128.
    Kuemmerle, N.B., Rysman, E., et al.: Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol. Cancer Ther. 10, 427–436 (2011)Google Scholar
  129. 129.
    Klein, S., Wolfe, R.R.: Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic patients with esophageal cancer. J. Clin. Invest. 86, 1403–1408 (1990)Google Scholar
  130. 130.
    Ookhtens, M., Kannan, R., et al.: Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am. J. Physiol. 247, R146–R153 (1984)Google Scholar
  131. 131.
    Bonuccelli, G., Tsirigos, A., et al.: Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9, 3506–3514 (2010)Google Scholar
  132. 132.
    Attar-Bashi, N.M., Orzeszko, K., et al.: Lipids and FA analysis of canine prostate tissue. Lipids 38, 665–668 (2003)Google Scholar
  133. 133.
    Zyromski, N.J., Mathur, A., et al.: Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery 146, 258–263 (2009)Google Scholar
  134. 134.
    Nieman, K.M., Kenny, H.A., et al.: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011)Google Scholar
  135. 135.
    Fata, J.E., Werb, Z., et al.: Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 6, 1–11 (2004)Google Scholar
  136. 136.
    Zhang, Y., Young, E.D., et al.: Heterogeneity and immunophenotypic plasticity of malignant cells in human liposarcomas. Stem Cell Res. 11, 772–781 (2013)Google Scholar
  137. 137.
    Mena, S., Ortega, A., et al.: Oxidative stress in environmental-induced carcinogenesis. Mutat. Res. 674, 36–44 (2009)Google Scholar
  138. 138.
    Babu, P.V., Liu, D., et al.: Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J. Nutr. Biochem. 24, 1777–1789 (2013)Google Scholar
  139. 139.
    Ribeiro, R., Monteiro, C., et al.: Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J. Exp. Clin. Cancer Res. 31, 32 (2012)Google Scholar
  140. 140.
    Martins, V.R., Dias, M.S., et al.: Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr. Opin. Oncol. 25, 66–75 (2013)Google Scholar
  141. 141.
    Han, J., Koh, Y.J., et al.: Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood 115, 957–964 (2010)Google Scholar
  142. 142.
    Bellows, C.F., Zhang, Y., et al.: Influence of BMI on level of circulating progenitor cells. Obesity 19, 1722–1726 (2011)Google Scholar
  143. 143.
    Bellows, C., Zang, Y., et al.: Circulation of progenitor cells in obese and lean colorectal cancer patients. Cancer Epidemiol. Biomark. Prev. 20 (11), 2461–2468 (2011)Google Scholar
  144. 144.
    Laird, D.J., von Andrian, U.H., et al.: Stem cell trafficking in tissue development, growth, and disease. Cell 132, 612–630 (2008)Google Scholar
  145. 145.
    Ip, J.E., Wu, Y., et al.: Mesenchymal stem cells utilize integrin beta1 not CXCR4 for myocardial migration and engraftment. Mol. Biol. Cell 18, 2873–2882 (2007)Google Scholar
  146. 146.
    Potocnik, A.J., Brakebusch, C., et al.: Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12, 653–663 (2000)Google Scholar
  147. 147.
    Rutkowski, J.M., Davis, K.E., et al.: Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J. 276, 5738–5746 (2009)Google Scholar
  148. 148.
    Zhao, B.C., Zhao, B., et al.: Adipose-derived stem cells promote gastric cancer cell growth, migration and invasion through SDF-1/CXCR4 axis. Hepatogastroenterology 57, 1382–1389 (2010)Google Scholar
  149. 149.
    Chamberlain, G., Fox, J., et al.: Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749 (2007)Google Scholar
  150. 150.
    Razmkhah, M., Jaberipour, M., et al.: Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-beta1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell. Immunol. 266, 116–122 (2011)Google Scholar
  151. 151.
    Lu, P., Weaver, V.M., et al.: The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012)Google Scholar
  152. 152.
    Haycock, J.W.: 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. 695, 1–15 (2011)Google Scholar
  153. 153.
    Suga, H., Kadoshima, T., et al.: Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480, 57–62 (2011)Google Scholar
  154. 154.
    Dutta, R.C., Dutta, A.K.: Cell-interactive 3D-scaffold; advances and applications. Biotechnol. Adv. 27, 334–339 (2009)Google Scholar
  155. 155.
    Carletti, E., Motta, A., et al.: Scaffolds for tissue engineering and 3D cell culture. Methods Mol. Biol. 695, 17–39 (2011)Google Scholar
  156. 156.
    Timmins, N.E., Scherberich, A., et al.: Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion). Tissue Eng. 13, 2021–2028 (2007)Google Scholar
  157. 157.
    Souza, G.R., Molina, J.R., et al.: Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)Google Scholar
  158. 158.
    Bhang, S.H., Cho, S.W., et al.: Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials 32, 2734–2747 (2011)Google Scholar
  159. 159.
    Daquinag, A.C., Souza, G.R., et al.: Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng. Part C Methods 19, 336–344 (2013)Google Scholar
  160. 160.
    Wu, J., Bostrom, P., et al.: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012)Google Scholar
  161. 161.
    Cinti, S.: Between brown and white: novel aspects of adipocyte differentiation. Ann. Med. 43, 104–115 (2011)Google Scholar
  162. 162.
    Cannon, B., Nedergaard, J.: Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004)Google Scholar
  163. 163.
    Azhdarinia, A., Daquinag, A.C., et al.: A peptide probe for targeted brown adipose tissue imaging. Nature Comm. 4, 2472–2483 (2013)Google Scholar
  164. 164.
    Sanchez-Gurmaches, J., Hung, C.M., et al.: PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 16, 348–362 (2012)Google Scholar
  165. 165.
    Lee, Y.H., Petkova, A.P., et al.: In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012)Google Scholar
  166. 166.
    Berry, R., Rodeheffer, M.S.: Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 15, 302–308 (2013)Google Scholar
  167. 167.
    Kucerova, L., Kovacovicova, M., et al.: Interaction of human adipose tissue-derived mesenchymal stromal cells with breast cancer cells. Neoplasma 58, 361–370 (2011)Google Scholar
  168. 168.
    LaPensee, E.W., Ben-Jonathan, N.: Novel roles of prolactin and estrogens in breast cancer: resistance to chemotherapy. Endocr. Relat. Cancer 17, R91–R107 (2010)Google Scholar
  169. 169.
    Behan, J.W., Yun, J.P., et al.: Adipocytes impair leukemia treatment in mice. Cancer Res. 69, 7867–7874 (2009)Google Scholar
  170. 170.
    Kolonin, M.G., Saha, P.K., et al.: Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 10, 625–632 (2004)Google Scholar
  171. 171.
    Barnhart, K.F., Christianson, D.R., et al.: A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci. Transl. Med. 3, 108ra112 (2011)Google Scholar
  172. 172.
    Mack, I., BelAiba, R.S., et al.: Functional analyses reveal the greater potency of preadipocytes compared with adipocytes as endothelial cell activator under normoxia, hypoxia, and TNFalpha exposure. Am. J. Physiol. Endocrinol. Metab. 297, E735–E748 (2009)Google Scholar
  173. 173.
    Cawthorn, W.P., Scheller, E.L., et al.: Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid Res. 53, 227–246 (2012)Google Scholar
  174. 174.
    Stephens, J.M.: The fat controller: adipocyte development. PLoS Biol. 10, e1001436 (2012)Google Scholar
  175. 175.
    Mancuso, P., Martin-Padura, I., et al.: Circulating perivascular progenitors: a target of PDGFR inhibition. Int. J. Cancer 129, 1344–1350 (2011)Google Scholar
  176. 176.
    Armulik, A., Abramsson, A., et al.: Endothelial/pericyte interactions. Circ. Res. 97, 512–523 (2005)Google Scholar
  177. 177.
    Xian, X., Hakansson, J., et al.: Pericytes limit tumor cell metastasis. J. Clin. Invest. 116, 642–651 (2006)Google Scholar
  178. 178.
    Han, J.M., Levings, M.K.: Immune regulation in obesity-associated adipose inflammation. J. Immunol. 191, 527–532 (2013)Google Scholar
  179. 179.
    Catalan, V., Gomez-Ambrosi, J., et al.: Adipose tissue immunity and cancer. Front. Physiol. 4, 275 (2013)Google Scholar
  180. 180.
    Hutley, L.J., Herington, A.C., et al.: Human adipose tissue endothelial cells promote preadipocyte proliferation. Am. J. Physiol. Endocrinol. Metab. 281, E1037–E1044 (2001)Google Scholar
  181. 181.
    Harjes, U., Bensaad, K., et al.: Endothelial cell metabolism and implications for cancer therapy. Br. J. Cancer 107, 1207–1212 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center for Stem Cell and Regenerative MedicineThe Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science CenterHoustonUSA

Personalised recommendations