Skip to main content

Mathematical Models of Adipose Tissue Dynamics

  • Chapter
  • First Online:
The Mechanobiology of Obesity and Related Diseases

Abstract

Adipose tissue is the main organ for long term storage of energy in the body. Adipose cells store excess energy by enlarging and/or increasing in number, while they provide energy by releasing fat and shrinking as needed. The regulation of energy storage capacity is not a simple problem considering the uncertainty of following food intakes and physical activities. In this Chapter, we introduce the inference of adipose tissue dynamics from adipose cell-size distributions using mathematical modeling and Bayesian inference. We examine recruitment of new adipose cells, growth/shrinkage and death of existing cells under positive/negative energy balance. A comprehensive understanding of adipose tissue dynamics can provide new insights into metabolic disorders such as obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tchkonia, T., Corkey, B.E., Kirkland, J.L.: Current view of the fat cell as an endocrine cell: lipotoxicity. In: Bray, G.A., Ryand, D.H. (ed.) Overweight and the Metabolic Syndrome: From Bench to Bedside. Springer, Cambridge (2006)

    Google Scholar 

  2. Slawik, M., Vidal-Puig, J.: Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res. Rev. 5, 144–164 (2006)

    Article  Google Scholar 

  3. Spalding, K.L., Arner, E., Westermark, P.O., Bernard, S., Buchholz, B.A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Näslund, E., Britton, T., Concha, H., Hassan, M., Rydén, M., Frisén, J., Arner, P.: Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008)

    Article  Google Scholar 

  4. Faust, I.M., Johnson, P.R., Hirsch, J.: Adipose tissue regeneration following lipectomy. Science 173, 391–393 (1977)

    Article  Google Scholar 

  5. Faust, I.M., Johnson, P.R., Stern, J.S., Hirsch, J.: Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am. J. Physiol. 235, E279–E286 (1977)

    Google Scholar 

  6. Pang, C., Gao, Z., Yin, J., Zhang, J., Jia, W., Ye, J.: Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am. J. Physiol. Endocrinol. Metab. 295, E313–E322 (2008)

    Article  Google Scholar 

  7. Lin, Y., Berg, A.H., Iyengar, P., Lam, T.K., Giacca, A., Combs, T.P., Rajala, M.W., Du, X., Rollman, B., Li, W., Hawkins, M., Barzilai, N., Rhodes, C.J., Fantus, I.G., Brownlee, M., Scherer, P.E.: The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J. Biol. Chem. 280, 4617–4626 (2005)

    Article  Google Scholar 

  8. Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A.S., Obin, M.S.: Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005)

    Article  Google Scholar 

  9. Monteiro, R., de Castro, P.M., Calhau, C., Azevedo, I.: Adipocyte size and liability to cell death. Obes. Surg. 16, 804–806 (2006)

    Article  Google Scholar 

  10. Björnheden, T., Jakubowicz, B., Levin, M., Odén, B., Edén, S., Sjöström, L., Lönn, M.: Computerized determination of adipocyte size. Obes. Res. 12, 95–105 (2004)

    Article  Google Scholar 

  11. Mersmann, H.J., MacNeil, M.D.: Variables in estimation of adipocyte size and number with a particle counter. J. Anim. Sci. 62, 980–991 (1986)

    Google Scholar 

  12. McLaughlin, T., Sherman, A., Tsao, P., Gonzalez, O., Yee, G., Lamendola, C., Reaven, G.M., Cushman, S.W.: Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 50, 1707–1715 (2007)

    Article  Google Scholar 

  13. Soula, H.A., Julienne, H., Soulage, C.O., Géloën, A.: Modelling adipocytes size distribution. J. Theor. Biol. 332, 89–95 (2013)

    Article  Google Scholar 

  14. Shoham, N., Gefen, A.: Stochastic modeling of adipogenesis in 3T3-L1 cultures to determine probabilities of events in the cell’s life cycle. Ann. Biomed. Eng. 39, 2637–53 (2011)

    Article  Google Scholar 

  15. Vermolen, F.J., Segal, A., Gefen, A.: A pilot study of a phenomenological model of adipogenesis in maturing adipocytes using Cahn-Hilliard theory. Med. Biol. Eng. Comput. 49, 1447–57 (2011)

    Article  Google Scholar 

  16. Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., Sumner, A.E., Cushman, S.W., Periwal, V.: Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5, e1000324 (2009)

    Article  Google Scholar 

  17. Jo, J., Guo, J., Liu, T., Mullen, S., Hall, K.D., Cushman, S.W., Periwal, V.: Hypertrophy-driven adipocyte death overwhelms recruitment under prolonged weight gain. Biophys. J. 99, 3535–3544 (2010)

    Article  Google Scholar 

  18. Jo, J., Kilimnik, G., Kim, A., Guo, C., Periwal, V., Hara, M.: Formation of pancreatic islets involves coordinated expansion of small islets and fission of large interconnected islet-like structures. Biophys. J. 101, 565–574 (2011)

    Article  Google Scholar 

  19. Sivia, D.S., Skilling, J.: Data Analysis: A Bayesian Tutorial, 2nd edn. Oxford University Press, New York (2006)

    Google Scholar 

  20. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  21. Gregory, P.C.: Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  22. Rodeheffer, M.S., Birsoy, K., Friedman, J.M.: Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008)

    Article  Google Scholar 

  23. Simon, G.: Histogenesis. In: Renold, A.E., Cahill, G.F. (eds.) Handbook of Physiology. Section 5: Adipose Tissue. American Physical Society, Washington DC (1965)

    Google Scholar 

  24. Jo, J., Shreif, Z., Periwal, V.: Quantitative dynamics of adipose cells. Adipocyte 1, 80–88 (2012)

    Article  Google Scholar 

  25. MacKellar, J., Cushman, S.W., Periwal, V.: Differential effects of thiazolidinediones on adipocyte growth and recruitment in Zucker fatty rats. PLoS One 4, e8196 (2009)

    Article  Google Scholar 

  26. Arner, P., Bernard, S., Salehpour, M., Possnert, G., Liebl, J., Steier, P., Buchholz, B.A., Eriksson, M., Arner, E., Hauner, H., Skurk, T., Rydén, M., Frayn, K.N., Spalding, K.L.: Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110–113 (2011)

    Article  Google Scholar 

  27. Skurk, T., Alberti-Huber, C., Herder, C., Hauner, H.: Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 92, 1023–1033 (2007)

    Article  Google Scholar 

  28. Strissel, K.J., Stancheva, Z., Miyoshi, H., Perfield JW, 2.n.d., DeFuria, J., Jick, Z., Greenberg, A.S., Obin, M.S.: Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56, 2910–2918 (2007)

    Article  Google Scholar 

  29. Niesler, C.U., Siddle, K., Prins, J.B.: Human preadipocytes display a depot-specific susceptibility to apoptosis. Diabetes 47, 1365–1368 (1998)

    Article  Google Scholar 

  30. MacKellar, J., Cushman, S.W., Periwal, V.: Waves of adipose tissue growth in the genetically obese Zucker fatty rat. PLoS One 5, e8197 (2010)

    Article  Google Scholar 

  31. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the “simulated annealing" algorithm. ACM Trans. Math. Softw. 13, 262–280 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hall, K.D., Sacks, G., Chandramohan, D., Chow, C.C., Wang, Y.C. et al.: Quantification of the effect of energy imbalance on bodyweight. Lancet 378(9793), 826837 (2011)

    Article  Google Scholar 

  34. Johannsen, D.L., Knuth, N.D., Huizenga, R., Rood, J.C., Ravussin, E. et al.: Metabolic slowing with massive weight loss despite preservation of fat-free mass. J. Clin. Endocrinol. Metab. 97(7), 248996 (2012)

    Google Scholar 

  35. Kursawe, R., Eszlinger, M., Narayan, D., Liu, T., Bazuine, M. et al.: Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: association with insulin resistance and hepatic steatosis. Diabetes 59(9), 228896 (2010)

    Article  Google Scholar 

  36. Yang, J., Eliasson, B., Smith, U., Cushman, S.W., Sherman, A.S.: The size of large adipose cells is a predictor of insulin resistance in first-degree relatives of type 2 diabetic patients. Obesity 20(5), 9328 (2012)

    Article  Google Scholar 

  37. Frayn, K., Bernard, S., Spalding, K., Arner, P.: Adipocyte triglyceride turnover is independently associated with atherogenic dyslipidemia. J. Am. Heart Assoc. 1(6), e003467 (2012)

    Article  Google Scholar 

  38. Laurencikiene, J., Skurk, T., Kulyt, A., Hedn, P., Astrm, G. et al.: Regulation of lipolysis in small and large fat cells of the same subject. J. Clin. Endocrinol. Metab. 96(12), E20459 (2011)

    Google Scholar 

  39. Koutsari, C., Basu, R., Rizza, R.A., Nair, K.S., Khosla, S. et al.: Nonoxidative free fatty acid disposal is greater in young women than men. J. Clin. Endocrinol. Metab. 96(2), 541547 (2011)

    Google Scholar 

  40. Horton, T.J., Dow, S., Armstrong, M., Donahoo, W.T.: Greater systemic lipolysis in women compared with men during moderate-dose infusion of epinephrine and/or norepinephrine. J. Appl. Physiol. 107(1), 200210 (2009)

    Article  Google Scholar 

  41. Jo, J., Hara, M., Ahlgren, U., Sorenson, R., Periwal, V.: Mathematical models of pancreatic islet size distributions. Islets 4, 10–19 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghyo Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jo, J., Shreif, Z., Gaillard, J.R., Arroyo, M., Cushman, S.W., Periwal, V. (2013). Mathematical Models of Adipose Tissue Dynamics. In: Gefen, A., Benayahu, D. (eds) The Mechanobiology of Obesity and Related Diseases. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 16. Springer, Cham. https://doi.org/10.1007/8415_2013_170

Download citation

  • DOI: https://doi.org/10.1007/8415_2013_170

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09335-2

  • Online ISBN: 978-3-319-09336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics