Skip to main content

Discrete and Continuum Multiscale Behaviour in Bacterial Communication

  • Chapter
  • First Online:
Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 14))

  • 8674 Accesses

Abstract

The interacting effects operating on subcellular (gene regulatory processes), cellular (interactions between neighbouring cells) and population (signalling molecule transport) scales are exemplified and explored through simple multiscale models. Specific attention is focused on how the upregulation (or downregulation) of small numbers of discrete cells can influence the behaviour of the population as a whole, by investigating toy models for positive autoregulation and by the simulation of a much more detailed model for quorum sensing within a Gram-positive population of bacteria. The implications for delays associated with gene expression are also investigated in a spatio-temporal context through the analysis of blow-up behaviour, as a mathematical symptom of upregulation through positive feedback, in some model reaction-diffusion delay equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We for the most part adopt dimensionless forms containing the minimal numbers of parameters in this section and the next.

  2. 2.

    Throughout we associate such blow up with upregulation (e.g. quorum sensing).

  3. 3.

    Note that we are thus concerned in this section with the interactions between two stable states, whereas the focus in the previous sections was on how the solution is driven away from an unstable state (namely the trivial one).

  4. 4.

    The quorum-sensing phenomena described above allow bacterial populations to function in some regards as multicellular organisms, and the types of qualitative phenomena that we have sought to classify are of course also relevant to plants, fungi and animals.

  5. 5.

    Discreteness means that it is only meaningful for an entire cell or compartment, rather than an infinitesimally small part of one, to become upregulated, an effect that cannot of course be captured by continuum models.

References

  1. Cheung, J.K., Keyburn, A.L., Carter, G.P., Lanckriet, A.L., An Immerseel, F., Moore, R.J., Rood, J.I: The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect. Immun. 78, 3064–3072 (2010)

    Article  Google Scholar 

  2. Cooksley, C.M., Davis, I.J., Winzer, K., Chan, W.C., Peck, M.W., Minton, N.P.: Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Appl. Environ. Microb. 76, 4448–4460 (2010)

    Article  Google Scholar 

  3. Dold, J.W.: Analysis of the early stage of thermal runaway. Q. J. Mech. Appl. Math. 38, 361–387 (1985)

    Article  MATH  Google Scholar 

  4. Fujii, T., Ingham, C., Nakayama, J., Beerthuyzen, M., Kunuki, R., Molenaar, D., Sturme, M., Vaughan, E., Kleerebezem, M., de Vos, W.: Two homologous Agr-like quorum-sensing systems cooperatively control adherence, cell morphology, and cell viability properties in Lactobacillus plantarum WCFS1. J. Bacteriol. 190, 7655–7665 (2008)

    Article  Google Scholar 

  5. Henke, J.M., Bassler, B.L.: Bacterial social engagements. Trends Cell Biol. 14, 648–656 (2004)

    Article  Google Scholar 

  6. Hocking, L.M., Stewartson, K., Stuart, J.T., Brown, S.N.: A nonlinear instability burst in plane parallel flow. J. Fluid Mech. 51, 705–735 (1972)

    Article  MATH  Google Scholar 

  7. Jabbari, S., King, J.R., Koerber, A.J., Williams, P.: Mathematical modelling of the agr operon in Staphylococcus aureus. J. Math. Biol. 61, 17–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jabbari, S., King, J.R., Williams, P.: Cross-strain quorum sensing inhibition by Staphylococcus aureus. Part 1: a spatially homogeneous model. Bull. Math. Biol. 74, 1292–1325 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jabbari, S., King, J.R., Williams, P.: Cross-strain quorum sensing inhibition by Staphylococcus aureus. Part 2: a spatially inhomogeneous model. Bull. Math. Biol. 74, 1326–1363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jabbari, S., Steiner, E., Heap, J.T., Winzer, K., Minton, N.P., King, J.R.: The putative influence of the agr operon upon survival mechanisms used by Clostridium acetobutylicum. Submitted to Math. Biosci. (2012)

    Google Scholar 

  11. Ji, G., Beavis, R., Novick, R.P.: Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997)

    Article  Google Scholar 

  12. Kuttler, C., Hense, B.A.: Interplay of two quorum sensing regulation systems of Vibrio fischeri. J. Theor. Biol. 251, 167–180 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ma, M., Vidal, J., Saputo, J., McClane, B.A., Uzal, F.: The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens Type C isolate CN3685. mBio 2, e00338-10 (2011)

    Google Scholar 

  14. Nakayama, J., Chen, S., Oyama, N., Nishiguchi, K., Azab, E.A., Tanaka, E., Kariyama, R., Sonomoto, K.: Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal AgrD. J. Bacteriol. 188, 8321–8326 (2006)

    Article  Google Scholar 

  15. Muratov, C.B., Shvartsman, S.Y.: Signal propagation and failure in discrete autocrine relays. Phys. Rev. Lett. 93, 118101 (2004)

    Article  Google Scholar 

  16. Nealson, K.H., Hastings, J.W.: Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496–518 (1979)

    Google Scholar 

  17. Novick, R.P.: Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48, 1429–1449 (2003)

    Article  Google Scholar 

  18. Owen, M.R.: Waves and propagation failure in discrete space models with nonlinear coupling and feedback. Phys. D Nonlinear Phenom. 173, 59–76 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Otto, M., Süßmuth, R., Vuong, C., Jung, G., Götz, F.: Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett. 450, 257–262 (1999)

    Article  Google Scholar 

  20. Otto, M., Echner, H., Voelter, W., Götz, F.: Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69, 1957–1960 (2001)

    Article  Google Scholar 

  21. Pèrez, P.D., Weiss, J.T., Hagen, S.J.: Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri. BMC Syst. Biol. 5, 153 (2011)

    Article  Google Scholar 

  22. Qazi, S.N.A., Counil, E., Morrissey, J., Rees, C.E.D., Cockayne, A., Winzer, K., Chan, W.C., Williams, P., Hill, P.J.: agr expression precedes escape of internalized Staphylococcus aureus from the host endosome. Infect. Immun. 69, 7074–7082 (2001)

    Article  Google Scholar 

  23. Redfield, R.J.: Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol. 10, 365–370 (2002)

    Article  Google Scholar 

  24. Riedel, C.U., Monk, I.R., Casey, P.G., Waidmann, M.S., Gahan, C.G.M., Hill, C.: AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol. Microbiol. 71, 1177–1189 (2009)

    Article  Google Scholar 

  25. Salmond, G.P.C., Bycroft, B.W., Stewart, G.S.A.B., Williams, P.: The bacterial ‘enigma’: cracking the code of cell–cell communication. Mol. Microbiol. 16, 615–624 (1995)

    Article  Google Scholar 

  26. Smits, W.K., Kuipers, O.P., Veening, J.-W.: Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4, 259–271 (2006)

    Article  Google Scholar 

  27. Steiner, E., Scott, J., Minton, N.P., Winzer, K.: An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum. Appl. Environ. Microbiol. 78, 1113–1122 (2012)

    Article  Google Scholar 

  28. Waters, C.M., Bassler, B.L.: Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319–346 (2005)

    Article  Google Scholar 

  29. Wuster, A., Babu, M.M.: Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J. Bacteriol. 190, 743–746 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

SJ thanks the MRC for funding in the form of a Special Training in Biomedical Informatics Fellowship and both authors the BBSRC for support under the SysMO and SysMO2 initiatives (COSMIC and COSMIC 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jabbari, S., King, J.R. (2013). Discrete and Continuum Multiscale Behaviour in Bacterial Communication. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_155

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_155

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics