Skip to main content

Patient-Specific Modeling of Subjects with a Lower Limb Amputation

  • Chapter
  • First Online:
Patient-Specific Modeling in Tomorrow's Medicine

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 09))

  • 1714 Accesses

Abstract

The rehabilitation outcomes following lower limb amputation depend on decision-making in the surgery room and in optimal fitting of the prosthetic components. Presently, the surgical and rehabilitation processes are performed according to general guidelines and on the experience of the surgeon/prosthetist. Patient-specific models of the residual limb and its interaction with the prosthetic socket have been created for the last two decades for research purposes. However, no modeling technique has yet to be integrated with the clinical community, as a tool for surgical and rehabilitative decision-making. In this chapter, we will review the main advancements in patient-specific modeling of the lower limb residuum over the last decades and discuss its potential use as both a tool for clinicians and as a patient-specific monitor aimed to prevent injury to the residuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beil, T.L., Street, G.M., Covey, S.J.: Interface pressures during ambulation using suction and vacuum-assisted prosthetic sockets. J. Rehabil. Res. Dev. 39(6), 693–700 (2000)

    Google Scholar 

  2. Boone, D., Burgess, E.: Automated fabrication of mobility aids: clinical demonstration of the UCL computer aided socket design system. J. Prosthet. Orthot. 1(3), 187–190 (1989)

    Article  Google Scholar 

  3. Brånemark, R., Brånemark, P.I., Rydevik, B., Myers, R.R.: Osseointegration in skeletal reconstruction and rehabilitation: a review. J. Rehabil. Res. Dev. 38, 175–181 (2001)

    Google Scholar 

  4. Commean, P.K., Smith, K.E., Vannier, M.W.: Design of a 3-D surface scanner for lower limb prosthetics: a technical note. J. Rehabil. Res. Dev. 33(3), 267–278 (1996)

    Google Scholar 

  5. Dean, D., Saunders, C.G.: A software package for design and manufacture of prosthetic sockets for transtibial amputees. IEEE Trans. Biomed. Eng. 32(4), 257–262 (1985)

    Article  Google Scholar 

  6. Dillingham, T.R., Pezzin, L.E.: Postacute care services use for dysvascular amputees: a population-based study of Massachusetts. Am. J. Phys. Med. Rehabil. 84, 147–152 (2005)

    Article  Google Scholar 

  7. Dudek, N.L., Marks, M.B., Marshall, S.C.: Skin problems in an amputee clinic. Am. J. Phys. Med. Rehabil. 85, 424–429 (2006)

    Article  Google Scholar 

  8. Esquenazi, A.: Amputation rehabilitation and prosthetic restoration. From surgery to community reintegration. Disabil. Rehabil. 26(14–15), 831–836 (2004)

    Article  Google Scholar 

  9. Facoetti, G., Gabbiadini, S., Colombo, G., Rizzi, C.: Knowledge-based system for guided modeling of sockets for lower limb prostheses. Comput. Aided Design Appl. 7(5), 723–737 (2010)

    Google Scholar 

  10. Gailey, R.S., Wenger, M.A., Raya, M., Kirk, N., Erbs, K., Spyropoulos, P., Nash, M.S.: Energy expenditure of trans-tibial amputees during ambulation at self-selected pace. Prosthet. Orthot. Int. 18(2), 84–91 (1994)

    Google Scholar 

  11. Gefen, A.: Deep tissue injury from a bioengineering point of view. Ostomy Wound Manage. 55(4), 26–36 (2009)

    Google Scholar 

  12. Gefen, A.: How much time does it take to get a pressure ulcer? Integrated evidence from human, animal, and in vitro studies. Ostomy Wound Manage. 54, 26–35 (2008)

    Google Scholar 

  13. Gefen, A., Gefen, N., Linder-Ganz, E., Margulies, S.S.: In vivo muscle stiffening under bone compression promotes deep pressure sores. J. Biomech. Eng. 127, 512–524 (2005)

    Article  Google Scholar 

  14. Geil, M.D.: Consistency, precision, and accuracy of optical and electromagnetic shape-capturing systems for digital measurement of residual-limb anthropometrics of persons with transtibial amputation. J. Rehabil. Res. Dev. 44(4), 515–524 (2007)

    Article  Google Scholar 

  15. Hagberg, K., Brånemark, R.: One hundred patients treated with osseointegrated transfemoral amputation prostheses–rehabilitation perspective. J. Rehabil. Res. Dev. 46(3), 331–344 (2009)

    Article  Google Scholar 

  16. Herbert, N., Simpson, D., Spence, W.D., Ion, W.: A preliminary investigation into the development of 3-D printing of prosthetic sockets. J. Rehabil. Res. Dev. 42(2), 141–146 (2005)

    Article  Google Scholar 

  17. Houston, V.L., Burgess, E.M., Childress, D.S., Lehneis, H.R., Mason, C.P., Garbarini, M.A., LaBlanc, K.P., Boone, D.A., Chan, R.B., Harlan, J.H., Brncick, M.D.: Automated fabrication of mobility aids (AFMA): below-knee CASD/CAM testing and evaluation program results. J. Rehabil. Res. Dev. 29(4), 78–124 (1992)

    Article  Google Scholar 

  18. Isaacson, B.M., Stinstra, J.G., MacLeod, R.S., Pasquina, P.F., Bloebaum, R.D.: Developing a quantitative measurement system for assessing heterotopic ossification and monitoring the bioelectric metrics from electrically induced osseointegration in the residual limb of service members. Ann. Biomed. Eng. 38(9), 2968–2978 (2010)

    Article  Google Scholar 

  19. Kosasih, J.B., Silver-Thorn, M.B.: Sensory changes in adults with unilateral transtibial amputation. J. Rehabil. Res. Dev. 35, 85–90 (1998)

    Google Scholar 

  20. Krouskop, T.A., Muilenberg, A.L., Doughtery, D.R., Winningham, D.J.: Computer-aided design of a prosthetic socket for an above-knee amputee. J. Rehabil. Res. Dev. 24(2), 31–38 (1987)

    Google Scholar 

  21. Lin, C.C., Chang, C.H., Wu, C.L., Chung, K.C., Liao, I.C.: Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model. Med. Eng. Phys. 26, 1–9 (2004)

    Article  Google Scholar 

  22. Linder-Ganz, E., Engelberg, S., Scheinowitz, M., Gefen, A.: Pressure-time cell death threshold for albino rat skeletal muscles as related to pressure sore biomechanics. J. Biomech. 39, 2725–2732 (2005)

    Article  Google Scholar 

  23. Linder-Ganz, E., Gefen, A.: Stress analyses coupled with damage laws to determine biomechanical risk factors for deep tissue injury during sitting. J. Biomech. Eng. 131, 011033-1–011033-13 (2009)

    Article  Google Scholar 

  24. Lyon, C.C., Kulkarni, J., Zimerson, E., VanRoss, E., Beck, M.H.: Skin disorders in amputees. J. Am. Acad. Dermatol. 42, 501–507 (2000)

    Article  Google Scholar 

  25. Mak, A.F.T., Zhang, M., Boone, D.A.: State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review. J. Rehabil. Res. Dev. 38, 161–174 (2001)

    Google Scholar 

  26. Mak, A.F., Zhang, M., Tam, E.W.: Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion. Annu. Rev. Biomed. Eng. 12, 29–53 (2010)

    Article  Google Scholar 

  27. Oberg, K., Kofman, J., Karisson, A., Lindstrom, B., Sigblad, G.: The CAPOD system-A scandinavian CAD/CAM system for prosthetic sockets. J. Prosthet. Orthot. 1(3), 139–148 (1989)

    Article  Google Scholar 

  28. Panagiotopoulou, O.: Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology. Ann. Hum. Biol. 36(5), 609–623 (2009)

    Article  Google Scholar 

  29. Pinzur, M.S., Beck, J., Himes, R., Callaci, J.: Distal tibiofibular bone-bridging in transtibial amputation. J. Bone Joint Surg. Am. 90(12), 2682–2687 (2008)

    Article  Google Scholar 

  30. Portnoy, S., Siev-Ner, I., Shabshin, N., Gefen, A.: Effects of sitting postures on risks for deep tissue injury in the residuum of a transtibial prosthetic-user: a biomechanical case study. Comput. Methods Biomech. Biomed. Eng. 5, 1 (2010)

    Google Scholar 

  31. Portnoy, S., Siev-Ner, I., Shabshin, N., Kristal, A., Yizhar, Z., Gefen, A.: Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users. J. Biomech. 42, 2686–2693 (2009)

    Article  Google Scholar 

  32. Portnoy, S., Siev-Ner, I., Yizhar, Z., Kristal, A., Shabshin, N., Gefen, A.: Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum. Ann. Biomed. Eng. 37, 2583–2605 (2009)

    Article  Google Scholar 

  33. Portnoy, S., van Haare, J., Geers, R.P.J., Kristal, A., Siev-Ner, I., Seelen, H.A.M., Oomens, C.W.J., Gefen, A.: Real-time subject-specific analyses of dynamic internal tissue loads in the residual limb of transtibial amputees. Med. Eng. Phys. 32, 312–323 (2010)

    Article  Google Scholar 

  34. Reihsner, R., Melling, M., Pfeiler, W., Menzel, E.J.: Alterations of biochemical and two-dimensional biomechanical properties of human skin in diabetes mellitus as compared to effects of in vitro non-enzymatic glycation. Clin. Biomech. (Bristol, Avon) 15(5), 379–386 (2000)

    Article  Google Scholar 

  35. Reynolds, D.P.: Shape design and interface load analysis for below-knee prosthetic sockets. Ph.D. Dissertation, University College, University of London (1998)

    Google Scholar 

  36. Reynolds, D.P., Lord, M.: Interface load analysis for computer-aided design of below-knee prosthetic sockets. Med. Biol. Eng. Comput. 30(4), 419–426 (1992)

    Article  Google Scholar 

  37. Rogers, B., Bosker, G.W., Crawford, R.H., Faustini, M.C., Neptune, R.R., Walden, G., Gitter, A.J.: Advanced trans-tibial socket fabrication using selective laser sintering. Prosthet. Orthot. Int. 31(1), 88–100 (2009)

    Article  Google Scholar 

  38. Rogers, B., Bosker, G., Faustini, M., Walden, G., Neptune, R.R., Crawford, R.: Case report: variably compliant transtibial prosthetic socket fabricated using solid freeform fabrication. J. Prosthet. Orthot. 20(1), 1–7 (2008)

    Article  Google Scholar 

  39. Sanders, J.E., Daly, C.H.: Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: comparison of finite element results with experimental measurements. J. Rehabil. Res. Dev. 30(2), 191–204 (1993)

    Google Scholar 

  40. Saunders, C.G., Bannon, M., Sabiston, R.M., Panych, L., Jenks, S.L., Wood, I.R., Raschke, S.: The CANFIT system: shape management technology for prosthetic and orthotic applications. J. Prosthet. Orthot. 1(3), 122–130 (1989)

    Article  Google Scholar 

  41. Selles, R.W., Janssens, P.J., Jongenengel, C.D., Bussmann, J.B.: A randomized controlled trial comparing functional outcome and cost efficiency of a total surface-bearing socket versus a conventional patellar tendon-bearing socket in trans-tibial amputees. Arch. Phys. Med. Rehab. 86, 154–161 (2005)

    Article  Google Scholar 

  42. Silver-Thorn, M.B.: Investigation of lower limb tissue perfusion during loading. J. Rehab. Res. Develop. 39, 597–608 (2002)

    Google Scholar 

  43. Silver-Thorn, M.B., Steege, J.W., Childress, D.S.: A review of prosthetic interface stress investigations. J. Rehab. Res. Develop. 33, 253–266 (1996)

    Google Scholar 

  44. Sinha, R., van den Heuvel, W.J., Arokiasamy, P.: Factors affecting quality of life in lower limb amputees. Prosthet. Orthot. Int. 35(1), 90–96 (2011)

    Article  Google Scholar 

  45. Slocum, D.B.: An Atlas of Amputation. The C.V. Mosby Company, St Louis (1949)

    Google Scholar 

  46. Smith, D.G., Burgess, E.M.: The use of CAD/CAM technology in prosthetics and orthotics–current clinical models and a view to the future. J. Rehabil. Res. Dev. 38(3), 327–334 (2001)

    Google Scholar 

  47. Smith, E., Ryall, N.: Residual limb osteomyelitis: a case series from a national prosthetic centre. Disabil. Rehabil. 31, 1785–1789 (2009)

    Article  Google Scholar 

  48. Steege, J.W., Schnur. D.S., Vorhis, R.L., Rovick, J.S.: Finite element analysis as a method of pressure prediction at the below-knee socket interface. In: Proceedings of RESNA 10th Annual Conference, California, pp. 814–816 (1987)

    Google Scholar 

  49. Van-Schie, C.H.M.: A review of the biomechanics of the diabetic foot. Lower Extrem. Wounds 4, 160–170 (2005)

    Article  Google Scholar 

  50. Walsh, N.E., Lancaster, J.L., Faulkner, V.W., Rogers, W.E.: A computerized system to manufacture prostheses for amputees in developing countries. J. Prosthet. Orthot. 1(3), 165–181 (1989)

    Article  Google Scholar 

  51. Weinans, H., Sumner, D.R., Igloria, R., Natarajan, R.N.: Sensitivity of periprosthetic stress-shielding to load and the bone density–modulus relationship in subject-specific finite element models. J. Biomech. 33(7), 809–817 (2000)

    Article  Google Scholar 

  52. Wik, T.S., Foss, O.A., Havik, S., Persen, L., Aamodt, A., Witsø, E.: Periprosthetic fracture caused by stress shielding after implantation of a femoral condyle endoprosthesis in a transfemoral amputee-a case report. Acta Orthop. 81(6), 765–767 (2010)

    Article  Google Scholar 

  53. Xu, W., Xu, D.H., Crocombe, A.D.: Three-dimensional finite element stress and strain analysis of a transfemoral osseointegration implant. Proc. Inst. Mech. Eng. H 220(6), 661–670 (2006)

    Article  Google Scholar 

  54. Yang, F.: Asymptotic solution to axisymmetric indentation of a compressible elastic thin film. Thin Solid Films 515, 2274–2283 (2006)

    Article  Google Scholar 

  55. Zhang, M., Mak, A.F., Roberts, V.C.: Finite element modeling of a residual lower-limb in a prosthetic socket: a survey of the development in the first decade. Med. Eng. Phys. 20(5), 360–373 (1998)

    Article  Google Scholar 

  56. Zhang, M., Roberts, C.: Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket. Med. Eng. Phys. 22(9), 607–612 (2000)

    Article  Google Scholar 

  57. Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating the prevalence of limb loss in the United States 2005–2050. Arch. Phys. Med. Rehabil. 89(3), 422–429 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigal Portnoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Portnoy, S., Gefen, A. (2011). Patient-Specific Modeling of Subjects with a Lower Limb Amputation. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_99

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_99

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics