Skip to main content

Mechanotransduction in the Nervous System

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 3))

Abstract

Mechanotransduction is the process by which cells convert mechanical load into cellular responses in the body. It is essential for interacting with the physical world around us and crucial for many internal physiological functions. Within the nervous system, mechanotransduction is how mechanical force or tissue deformation is converted to neural signals, typically action potentials. Mechanosensation is the subset of mechanotransduction processes that lead to the perception of a tactile stimulus to the body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  2. Jaalouk, D.E., Lammerding, J.: Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009)

    Article  Google Scholar 

  3. Lewin, G.R., Moshourab, R.: Mechanosensation and pain. J. Neurobiol. 61, 30–44 (2004)

    Article  Google Scholar 

  4. Blackshaw, L.A., Brookes, S.J.H., Grundy, D., et al.: Sensory transmission in the gastrointestinal tract. Neurogastroenterol. Motil. 19, 1–19 (2007)

    Article  Google Scholar 

  5. Drummond, H.A., Price, M.P., Welsh, M.J., et al.: A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21, 1435–1441 (1998)

    Article  Google Scholar 

  6. Daly, D., Rong, W., Chess Williams, R., et al.: Bladder afferent sensitivity in wild type and TRPV1 knockout mice. J. Physiol. 583, 663–674 (2007)

    Article  Google Scholar 

  7. Wozniak, M.A., Chen, C.S.: Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009)

    Article  Google Scholar 

  8. Boulais, N., Pennec, J.P., Lebonvallet, N., et al.: Rat Merkel cells are mechanoreceptors and osmoreceptors. PLoS One 4, e7759 (2009)

    Article  Google Scholar 

  9. Koizumi, S., Fujishita, K., Inoue, K., et al.: Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem. J. 380, 329 (2004)

    Article  Google Scholar 

  10. Maricich, S.M., Wellnitz, S.A., Nelson, A.M., et al.: Merkel cells are essential for light-touch responses. Science 324, 1580 (2009)

    Article  Google Scholar 

  11. McCarter, G.C., Reichling, D.B., Levine, J.D.: Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci. Lett. 273, 179–182 (1999)

    Article  Google Scholar 

  12. Kandel, E., Schwartz, J., Jessell, T. (eds.): Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  13. Olausson, H., Lamarre, Y., Backlund, H., et al.: Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5, 900–904 (2002)

    Article  Google Scholar 

  14. Lucarz, A., Brand, G.: Current considerations about Merkel cells. Eur. J. Cell Biol. 86, 243–251 (2007)

    Article  Google Scholar 

  15. Haeberle, H., Lumpkin, E.: Merkel cells in somatosensation. Chemosensory Perception 1, 110–118 (2008)

    Article  Google Scholar 

  16. Olausson, H., Wessberg, J., Kakuda, N.: Tactile directional sensibility: peripheral neural mechanisms in man. Brain Res. 866, 178–187 (2000)

    Article  Google Scholar 

  17. Proske, U., Gandevia, S.C.: The kinaesthetic senses. J. Physiol. 587, 4139–4146 (2009)

    Article  Google Scholar 

  18. Hudspeth, A.: Hearing. In: Kandel, E.R., Schwartz, J.H., Jessel, T.M. (eds.) Principles of Neural Science, 4th edn, pp. 590–613. McGraw-Hill, New York (2000)

    Google Scholar 

  19. Hudspeth, A.: Sensory transduction in the ear. In: Kandel, E.R., Schwartz, J.H., Jessel, T.M. (eds.) Principles of Neural Science, 4th edn, pp. 614–624. McGraw-Hill, New York (2000)

    Google Scholar 

  20. Evans, M.G., Kros, C.J.: The cochlea–new insights into the conversion of sound into electrical signals. J. Physiol. 576, 3–5 (2006)

    Article  Google Scholar 

  21. Gillespie, P.G., Müller, U.: Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139, 33–44 (2009)

    Article  Google Scholar 

  22. Schwander, M., Kachar, B., Müller, U.: The cell biology of hearing. J. Cell Biol. 190, 9–20 (2010)

    Article  Google Scholar 

  23. Hahn, C., Schwartz, M.A.: Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009)

    Article  Google Scholar 

  24. Tavi, P., Laine, M., Weckström, M., et al.: Cardiac mechanotransduction: from sensing to disease and treatment. Trends Pharmacol. Sci. 22, 254–260 (2001)

    Article  Google Scholar 

  25. Delmas, P., Hao, J., Rodat-Despoix, L.: Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12, 139–153 (2011)

    Article  Google Scholar 

  26. Lumpkin, E.A., Marshall, K.L., Nelson, A.M.: The cell biology of touch. J. Cell Biol. 191, 237–248 (2010)

    Article  Google Scholar 

  27. Christensen, A.P., Corey, D.P.: TRP channels in mechanosensation: direct or indirect activation? Nat. Rev. Neurosci. 8, 510–521 (2007)

    Article  Google Scholar 

  28. Chalfie, M.: Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10, 44–52 (2009)

    Article  Google Scholar 

  29. Corey, D., Hudspeth, A.: Response latency of vertebrate hair cells. Biophys. J. 26, 499–506 (1979)

    Article  Google Scholar 

  30. Albert, J., Nadrowski, B., Göpfert, M.: Mechanical signatures of transducer gating in the Drosophila ear. Curr. Biol. 17, 1000–1006 (2007)

    Article  Google Scholar 

  31. O’Hagan, R., Chalfie, M., Goodman, M.B.: The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8, 43–50 (2005)

    Article  Google Scholar 

  32. Walker, R., Willingham, A., Zuker, C.: A Drosophila mechanosensory transduction channel. Science 287, 2229 (2000)

    Article  Google Scholar 

  33. Martinac, B., Adler, J., Kung, C.: Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348, 261–263 (1990)

    Article  Google Scholar 

  34. Perozo, E., Cortes, D.M., Sompornpisut, P., et al.: Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002)

    Article  Google Scholar 

  35. Lin, Y., Cheng, C., LeDuc, P., et al.: Understanding sensory nerve mechanotransduction through localized elastomeric matrix control. PLoS One 4, 4293 (2009)

    Article  Google Scholar 

  36. Lumpkin, E.A., Caterina, M.J.: Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007)

    Article  Google Scholar 

  37. Coste, B., Mathur, J., Schmidt, M., et al.: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55 (2010)

    Article  Google Scholar 

  38. Li, W., Feng, Z., Sternberg, P., et al.: A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440, 684–687 (2006)

    Article  Google Scholar 

  39. Sidi, S., Friedrich, R., Nicolson, T.: NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301, 96 (2003)

    Article  Google Scholar 

  40. Caterina, M.J., Leffler, A., Malmberg, A., et al.: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306 (2000)

    Article  Google Scholar 

  41. Caterina, M.J., Schumacher, M.A., Tominaga, M., et al.: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997)

    Article  Google Scholar 

  42. Chung, M.-K., Lee, H., Mizuno, A., et al.: TRPV3 and TRPV4 Mediate warmth-evoked currents in primary mouse keratinocytes. J. Biol. Chem. 279, 21569–21575 (2004)

    Article  Google Scholar 

  43. Moqrich, A., Hwang, S.W., Earley, T.J., et al.: Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468 (2005)

    Article  Google Scholar 

  44. Birder, L., Nakamura, Y., Kiss, S., et al.: Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat. Neurosci. 5, 856–860 (2002)

    Article  Google Scholar 

  45. Ghilardi, J.R., Röhrich, H., Lindsay, T.H., et al.: Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci. 25, 3126 (2005)

    Article  Google Scholar 

  46. Jones, R.C.W., Xu, L., Gebhart, G.: The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 25, 10981 (2005)

    Article  Google Scholar 

  47. McGaraughty, S., Chu, K.L., Scanio, M.J.C., et al.: A Selective Nav1. 8 sodium channel blocker, A-803467 [5-(4-chlorophenyl-N-(3, 5-dimethoxyphenyl) furan-2-carboxamide], attenuates spinal neuronal activity in neuropathic rats. J. Pharmacol. Exp. Ther. 324, 1204 (2008)

    Article  Google Scholar 

  48. Shibasaki, K., Murayama, N., Ono, K., et al.: TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J. Neurosci. 30, 4601 (2010)

    Article  Google Scholar 

  49. Vilceanu, D., Stucky, C.L.: TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS One 5, 15959–15964 (2010)

    Article  Google Scholar 

  50. Brierley, S.M., Hughes, P.A., Page, A.J., et al.: The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137, 2084–2095 (2009). e2083

    Article  Google Scholar 

  51. Kerstein, P.C., Del Camino, D., Moran, M.M., et al.: Pharmacological blockade of TRPA 1 inhibits mechanical firing in nociceptors. Mol. Pain 5, 19 (2009)

    Article  Google Scholar 

  52. Kwan, K.Y., Glazer, J.M., Corey, D.P., et al.: TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J. Neurosci. 29, 4808–4819 (2009)

    Article  Google Scholar 

  53. Eid, S.R., Crown, E.D., Moore, E.L., et al.: HC-030031, a TRPA1 selective antagonist, attenuates inflammatory-and neuropathy-induced mechanical hypersensitivity. Mol. Pain 4, 48 (2008)

    Article  Google Scholar 

  54. McGaraughty, S., Chu, K.L., Perner, R.J., et al.: TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol. Pain 6, 14 (2010)

    Article  Google Scholar 

  55. Petrus, M., Peier, A.M., Bandell, M., et al.: A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 (2007)

    Article  Google Scholar 

  56. Alessandri-Haber, N., Dina, O.A., Chen, X., et al.: TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J. Neurosci. 29, 6217 (2009)

    Article  Google Scholar 

  57. Maroto, R., Raso, A., Wood, T.G., et al.: TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7, 179–185 (2005)

    Article  Google Scholar 

  58. Patel, A., Sharif-Naeini, R., Folgering, J., et al.: Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflügers Arch. Eur. J. Physiol. 460, 571–581 (2010)

    Article  Google Scholar 

  59. Suzuki, H., Kerr, R., Bianchi, L., et al.: In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003)

    Article  Google Scholar 

  60. Price, M.P., Lewin, G.R., McIlwrath, S.L., et al.: The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000)

    Article  Google Scholar 

  61. Price, M.P., McIlwrath, S.L., Xie, J., et al.: The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001)

    Article  Google Scholar 

  62. Mogil, J., Breese, N., Witty, M., et al.: Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J. Neurosci. 25, 9893 (2005)

    Article  Google Scholar 

  63. Dedman, A., Sharif-Naeini, R., Folgering, J.H.A., et al.: The mechano-gated K 2P channel TREK-1. Eur. Biophys. J. 38, 293–303 (2009)

    Article  Google Scholar 

  64. Alloui, A., Zimmermann, K., Mamet, J., et al.: TREK-1, a K+; channel involved in polymodal pain perception. EMBO J. 25, 2368–2376 (2006)

    Article  Google Scholar 

  65. Maingret, F., Fosset, M., Lesage, F., et al.: TRAAK is a mammalian neuronal mechano-gated K+ channel. J. Biol. Chem. 274, 1381–1387 (1999)

    Article  Google Scholar 

  66. Noel, J., Zimmermann, K., Busserolles, J., et al.: The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28, 1308–1318 (2009)

    Article  Google Scholar 

  67. Xiao, R., Xu, X.Z.S.: Mechanosensitive channels: in touch with Piezo. Curr. Biol. 20, R936–R938 (2010)

    Article  Google Scholar 

  68. Ji, G., Zhou, S., Carlton, S.: Intact A [delta]-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats. Neuroscience 154, 1054–1066 (2008)

    Article  Google Scholar 

  69. Woolf, C., Ma, Q.: Nociceptors–noxious stimulus detectors. Neuron 55, 353–364 (2007)

    Article  Google Scholar 

  70. Tan, P.L., Katsanis, N.: Thermosensory and mechanosensory perception in human genetic disease. Hum. Mol. Genet. 18, R146–R155 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Bilston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bilston, L.E., Stucky, C.L. (2011). Mechanotransduction in the Nervous System. In: Bilston, L. (eds) Neural Tissue Biomechanics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_83

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_83

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13889-8

  • Online ISBN: 978-3-642-13890-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics