Skip to main content

Fucoidan: A Versatile Biopolymer for Biomedical Applications

  • Chapter
  • First Online:
Active Implants and Scaffolds for Tissue Regeneration

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 8))

Abstract

Fucoidan is a natural, anionic sulfated polysaccharide extracted from brown marine algae with a wide variety of pharmacological features like anti-inflammatory, anti-oxidative, anticoagulant and antithrombotic effects. Fucoidan has been extensively studied for last decade due to its numerous interesting biological activities. In recent years, the research on drug and gene delivery systems, diagnostic microparticles and wound and burn healing formulations of fucoidan has been increasing in course of time. This review gives an overview about the research of concerning structural characterization and biological activity of fucoidan; application of fucoidan-based systems in pharmaceutical field for drug and DNA delivery and in biomedical area for wound and burn treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsbjörn, B.: In search of an ideal skin substitute. Scand. J. Plast. Reconstr. Surg. 18, 127–133 (1984)

    Google Scholar 

  2. Akbuğa, J., Özbaş-Turan, S., Erdoğan, N.: Plasmid-DNA loaded chitosan microspheres for in vitro IL-2 expression. Eur. J. Pharm. Biopharm. 58, 501–507 (2004)

    Google Scholar 

  3. Angstwurm, K., Weber, J.R., Segert, A., Bürger, W., Weih, M., Freyer, D., Einhaupl, K.M., Dirnagl, U.: Fucoidin, a polysaccharide inhibiting leukocyte rolling, attenuates inflammatory responses in experimental pneumococcal meningitis in rats. Neurosci. Lett. 191, 1–4 (1995)

    Google Scholar 

  4. Arai, T., Parker, A., Busby, W., Clemmons, D.R.: Heparin, heparan sulfate, and dermatan sulfate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complex. J. Biol. Chem. 269, 20388–20393 (1994)

    Google Scholar 

  5. Balasubramani, M., Kumar, T.R., Babu, M.: Skin substitutes: a review. Burns 27, 534–544 (2001)

    Google Scholar 

  6. Bangyekan, C., Aht-Ong, D., Srikulkit, K.: Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr. Polym. 63, 61–71 (2006)

    Google Scholar 

  7. Bertram, U., Bodmeier, R.: In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur. J. Pharm. Sci. 27, 62–71 (2006)

    Google Scholar 

  8. Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Shashkov, A.S., Nifantiev, E.N., Usov, A.I.: Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydr. Res. 337, 719–730 (2002)

    Google Scholar 

  9. Borrello, I., Pardoll, D.: GM-CSF-based cellular vaccines: a review of the clinical experience. Cytokine Growth Factor Rev. 13, 185–193 (2002)

    Google Scholar 

  10. Cashman, J.D., Kennah, E., Shuto, A., Winternitz, C., Springate, C.M.: Fucoidan film safely inhibits surgical adhesions in a rat model. J. Surg. Res. (2010)

    Google Scholar 

  11. Cheung, R.Y., Ying, Y., Rauth, A.M., Marcon, N., Wu, X.Y.: Biodegradable dextran-based microspheres for delivery of anticancer drug mitomycin C. Biomaterials 26, 5375–5385 (2005)

    Google Scholar 

  12. Chevolot, L., Foucault, A., Chaubet, F., Kervarec, N., Sinquin, C., Fisher, A.M., Vidal, C.B.: Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohyd. Res. 319, 154–165 (1999)

    Google Scholar 

  13. Chizhov, A.O., Dell, A., Morris, H.R., Halsam, S.M., McDowell, R.A., Shashkov, A.S., Nifat’ev, N.E., Khatuntseva, E.A., Usov, A.I.: A study of fucoidan from the brown seaweed Chorda filum. Carbohyd. Res. 320, 108–119 (1999)

    Google Scholar 

  14. Chowdary, K.P.R., Rao, Y.S.: Mucoadhesive microspheres for controlled drug delivery. Biol. Pharm. Bull. 27, 1717–1724 (2004)

    Google Scholar 

  15. Church, F.C., Meade, J.B., Treanor, R.E., Whinna, H.C.: Antithrombin activity of fucoidan. J. Biol. Chem. 264, 3618–3623 (1989)

    Google Scholar 

  16. Colwell, N.S., Grupe, M.J., Tollefsen, M.: Amino acid residues of heparin cofactor II required for stimulation of thrombin inhibition by sulphated polyanions. BBA 1431, 148–156 (1999)

    Google Scholar 

  17. Çetin, C., Köse, A.A., Aral, E., Çolak, Ö., Erçel, C., Karabağlı, Y., Özyılmaz, M., Alataş, Ö., Eker, A.: Protective effect of fucoidin (a neutrophil rolling inhibitor) on ischemia reperfusion injury: experimental study in rat epigastric island flaps. Ann. Plast. Surg. 47, 540–546 (2001)

    Google Scholar 

  18. Dace, R., Mcbride, E., Brooks, K., Gander, J., Buszko, M., Doctor, V.M.: Comparison of the anticoagulant action of sulfated and phosphorylated polysaccharides. Thromb. Res. 87, 113–121 (1997)

    Google Scholar 

  19. D’Ayala, G.G., Malinconico, M., Laurienzo, P.: Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13(9), 2069–2106 (2008)

    Google Scholar 

  20. Del Bigio, M.R., Yan, H.J., Campbell, T.M., Peeling, J.: Effect of fucoidan treatment on collagenase-induced intracerebral hemorrhage in rats. Neurol. Res. 21, 415–419 (1999)

    Google Scholar 

  21. Derenzini, M.: The AgNORs. Micron 31, 117–120 (2000)

    Google Scholar 

  22. Desire, L., Mysiakine, E., Bonnafous, D., Couvreur, P.: Sustained delivery of growth factors from methylidene malonate 2.1.2-based polymers. Biomaterials 27, 2609–2620 (2006)

    Google Scholar 

  23. Duarte, M.E., Cardoso, M.A., Noseda, M.D., Cerezo, A.S.: Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr. Res. 333(4), 281–293 (2001)

    Google Scholar 

  24. Dürig, J., Bruhn, T., Zurborn, K.H., Gutensohn, K., Bruhn, H.D., Beress, L.: Anticoagulant fucoidan fraction from Fucus vesiculosus induce platelet activation in vitro. Thromb. Res. 85, 479–491 (1997)

    Google Scholar 

  25. Eichler, M.J., Carlson, M.A.: Modeling dermal granulation tissue with the linear fibroblast-populated collagen matrix: a comparison with the round matrix model. J. Dermatol. Sci. 41, 97–108 (2006)

    Google Scholar 

  26. Erdağ, G., Sheridan, R.L.: Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns 30, 322–328 (2004)

    Google Scholar 

  27. Fujimura, T., Shibuya, Y., Moriwaki, S., Tsukahara, K., Kitahara, T., Sano, T., Nishizawa, Y., Takema, Y.: Fucoidan is the active component of Fucus vesiculosus that promotes contraction of fibroblast-populated collagen gels. Biol. Pharm. Bull. 23, 1180–1184 (2000)

    Google Scholar 

  28. Fundueanu, G., Constantin, M., Ascenzi, P.: Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs. Biomaterials 29, 2767–2775 (2008)

    Google Scholar 

  29. Gan, L., Fagerholm, P., Joon Kim, H.: Effect of leukocytes on corneal cellular proliferation and wound healing. Invest. Ophthalmol. Vis. Sci. 40, 575–581 (1999)

    Google Scholar 

  30. George, M., Abraham, T.E.: Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J. Control Release 114, 1–14 (2006)

    Google Scholar 

  31. Giraux, J.L., Bretaudiere, J., Matou, S., Fischer, A.M.: Fucoidan, as heparin, induces tissue factor pathway inhibitör release from cultured human endothelial cells. Thromb. Haemost. 80, 692–695 (1998)

    Google Scholar 

  32. Grenha, A., Seijo, B., Remunan-Lopez, C.: Microencapsulated chitosan nanoparticules for lung protein delivery. Eur. J. Pharm. Sci. 25, 427–437 (2005)

    Google Scholar 

  33. Hamilton, J.A.: Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8(7), 533–544 (2008)

    Google Scholar 

  34. Henriksen, I., Green, K.L., Smart, J.D., Smistad, G., Karlsen, J.: Bioadhesion of hydrated chitosans: an in vitro and in vivo study. Int. J. Pharm. 145, 231–240 (1996)

    Google Scholar 

  35. Holtkamp, A.D., Kelly, S., Ulber, R., Lang, S.: Fucoidans and fucoidanases—focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl. Microbiol. Biotechnol. 82(1), 1–11 (2009)

    Google Scholar 

  36. Holt, G.E., Disis, M.L.: Immune modulation as a therapeutic strategy for non-small-cell lung cancer. Clin. Lung Cancer 9, 13–19 (2008)

    Google Scholar 

  37. Howling, G.I., Dettmar, P.W., Goddard, P.A., Hampson, F.C., Dornish, M., Wood, E.J.: The effect of chitin and chitosan on the proliferation of human skin fibroblast and keratinocytes in vitro. Biomaterials 22, 2959–2966 (2001)

    Google Scholar 

  38. Ho, W.S., Ying, S.Y., Choi, P.C.L., Wong, T.W.: A prospective controlled clinical study of skin donor sites treated with a 1–4, 2-acetamide-deoxy-B-D-glucan polymer: a preliminary report. Burns 27, 759–761 (2001)

    Google Scholar 

  39. Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., Yura, H., Matsui, T., Hattori, H., Uenoyama, M., Kurita, A.: Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23, 833–840 (2002)

    Google Scholar 

  40. Jakobsen, U., Simonsen, A.C., Vogal, S.: DNA controlled assembly of soft nanoparticles. Nucleic Acids Symp. Ser. 52, 225–226 (2008)

    Google Scholar 

  41. Kawakami, S., Higuchi, Y., Hashida, M.: Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J. Pharm. Sci. 97, 726–745 (2008)

    Google Scholar 

  42. Kearney, J.N.: Clinical evaluation of skin substitutes. Burns 27, 545–551 (2001)

    Google Scholar 

  43. Khan, T.A., Peh, K.K., Chng, H.S.: Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. J. Pharm. Pharmaceut. Sci. 3, 303–311 (2000)

    Google Scholar 

  44. Kim, T.H., Jiang, H.L., Nah, J.W., Cho, M.H., Akaike, T., Cho, C.S.: Receptor-mediated gene delivery using chemically modified chitosan. Biomed. Mater. 2(3), 95–100 (2007)

    Google Scholar 

  45. Kim, W.J., Koo, Y.K., Jung, M.K., Moon, H.R., Kim, S.M., Synytsya, A., Yun-Choi, H.S., Kim, Y.S., Park, J.K., Park, Y.I.: Anticoagulating activities of low-molecular weight fuco-oligosaccharides prepared by enzymatic digestion of fucoidan from the sporophyll of Korean Undaria pinnatifida. Arch. Pharm. Res. 33(1), 125–131 (2010)

    Google Scholar 

  46. Knapczyk, J.: Chitosan hydrogels as a base for semisolid drug forms. Int. J. Pharm. 93, 233–237 (1993)

    Google Scholar 

  47. Kobayashi, T., Honke, K., Miyazaki, T., Matsumoto, K., Nakamura, T., Ishizuka, I., Makita, A.: Hepatocyte growth factor specifically binds to sulfoglycolipids. J. Biol. Chem. 269, 9817–9821 (1994)

    Google Scholar 

  48. Kockisch, S., Rees, G.D., Young, S.A., Tsibouklis, J., Smart, J.D.: Polymeric microspheres for drug delivery to the oral cavity: an in vitro evaluation of mucoadhesive potential. J. Pharm. Sci. 92, 1614–1623 (2003)

    Google Scholar 

  49. Kubota, N., Kikuchi, Y.: Macromolecular complexes of chitosan. In: Dumitriu, S. (ed.) Polysaccharides, pp. 595–628. Marcel Dekker, New York (1998)

    Google Scholar 

  50. Kui-Jin, K., Ok-hwan, L., Boo-yong, L.: Genotoxicity studies on fucoidan from Sporophyll of Undaria pinnatifida. Food Chem. Toxicol. 48, 1101–1104 (2010)

    Google Scholar 

  51. Kumar, M.N., Muzzarelli, R.A., Muzzarelli, C., Sashiwa, H., Domb, A.J.: Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104(12), 6017–6084 (2004)

    Google Scholar 

  52. Kusaykin, M., Bakunina, I., Sova, V., Ermakova, S., Kuznetsova, T., Besednova, N., Zaporozhets, T., Zvyagintseva, T.: Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol. J. 3(7), 904–915 (2008)

    Google Scholar 

  53. Kuznetsova, T.A., Besednova, N.N., Mamaev, A.N., Momot, A.P., Shevchenko, N.M., Zvyagintseva, T.N.: Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the okhotsk sea. Bull. Exp. Biol. Med. 5, 471–473 (2003)

    Google Scholar 

  54. Lambert, O., Nagele, O., Loux, V., Bonny, J.D., Marchal-Heussler, L.: Poly(ethylene carbonate) microsphere: manufacturing process and internal structure characterization. J. Control Release 67, 89–99 (2000)

    Google Scholar 

  55. Larsen, B., Haug, A.: Free-boundary electrophoresis of acidic polysaccharides from marine alga Ascophyllum nodosum (L.). Le. Jol. 17, 1646–1652 (1963)

    Google Scholar 

  56. Leary, R.O., Rerek, M., Wood, E.J.: Fucoidan modulates the effect of transforming growth factor (TGF)-β1 on fibroblast proliferation and wound repopulation in in vitro models of dermal wound repair. Biol. Pharm. Bull. 27, 266–270 (2004)

    Google Scholar 

  57. Fucoidan. In: Levring, T., Hoppe, H.A., Schmid, O.J., (eds.) Marine Algae, pp. 330–332, Cram, De Gruyter & Co., Hamburg, Germany (1969)

    Google Scholar 

  58. Li, B., Lu, F., Wei, X., Zhao, R.: Fucoidan: structure and bioactivity. Molecules. 13(8), 1671–1695 (2008)

    Google Scholar 

  59. Linnemann, G., Reinhart, K., Parade, U., Philipp, A., Pfister, W., Straube, E., Karzai, W.: The effects of inhibiting leukocyte migration with fucoidin in a rat peritonitis model. Intensive. Care Med. 26, 1540–1546 (2000)

    Google Scholar 

  60. Lopez, C.R., Bodmeier, R.: Mechanical, water uptake and permeability of crosslinked chitosan glutamate and alginate films. J. Control Release 44, 215–225 (1997)

    Google Scholar 

  61. Mabeau, S., Kloareg, B., Joseleau, J.P.: Fraction and analysis of fucan from brown alage. Phytochemistry 29, 2441–2445 (1990)

    Google Scholar 

  62. MacEwan, S.R., Chilkoti, A.: Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94(1), 60–77 (2010)

    Google Scholar 

  63. Madri, J.A.: Inflammation and healing. In: Kıssane, J.M. (ed.) Anderson’s Pathology, vol. 1, pp. 67–110, the CV Mosby Company, St. Louis (1990)

    Google Scholar 

  64. Matricardi, P., Meo, C.D., Coviello, T., Alhaique, F.: Recent advances and perspectives on coated alginate microspheres for modified drug delivery. Expert. Opin. Drug Deliv. 5(4), 417–425 (2008)

    Google Scholar 

  65. Mauray, S., Raucourt, E.D., Chaubet, F., Maiga-Revel, O., Sternberg, C., Fischer, A.M.: Comparative anticoagulant activity and influence on thrombin generation of dextran derivatives and of a fucoidan fraction. J. Biomater. Sci. Polymer Edn. 9, 373–387 (1998)

    Google Scholar 

  66. Mauray, S., Raucourt, E., Talbot, J.C., Dachary-Prigent, J., Jozefowicz, M., Fischer, A.M.: Mechanism of factor IXa inhibition by antithrombin in the presence of unfractionated and low molecular weight heparins and fucoidan. BBA 1387, 184–194 (1998)

    Google Scholar 

  67. Mauray, S., Sternberg, C., Theveniaux, J., Millet, J., Sinquin, C., Tapon-Bretaudiere, J., Fischer, A.M.: Venous antithrombotic and anticoagulant activities of a fucoidan fraction. Thromb. Haemostasis 74, 1280–1285 (1995)

    Google Scholar 

  68. Minix, R., Doctor, V.M.: Interaction of fucoidan with proteases and inhibitors of coagulation and fibrinolysis. Thromb. Res. 87, 419–429 (1997)

    Google Scholar 

  69. Montembault, A., Viton, C., Domard, A.: Physico-chemical studies of the gelation of chitosan in a hydroalcoholic medium. Biomaterials 26, 933–943 (2005)

    Google Scholar 

  70. Mulloy, B., Mourao, P.A.S., Gray, E.: Structure/function studies of anticoagulant sulphated polysaccharides using NMR. J. Biotechnol. 77, 123–135 (2000)

    Google Scholar 

  71. Mummery, R.S., Rider, C.C.: Characterization of the heparin-binding properties of IL-6. J. Immunol. 165, 5671–5679 (2000)

    Google Scholar 

  72. Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., Tanaka, Y., Kiyosawa, T., Sato, Y., Ishihara, M.: Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31(1), 83–90 (2010)

    Google Scholar 

  73. Najjam, S., Mulloy, B., Theze, J., Gordon, M., Gibbs, R., Rider, C.C.: Further characterization of the binding of human recombinant interleukin 2 to heparin and identification of putative binding sites. Glycobiology 8, 509–516 (1998)

    Google Scholar 

  74. Nakamura, S., Nambu, M., Ishizuka, T., Hattori, H., Kanatani, Y., Takase, B., Kishimoto, S., Amano, Y., Aoki, H., Kiyosawa, T., Ishihara, M., Maehara, T.: Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J. Biomed. Mater. Res. 85A, 619–627 (2008)

    Google Scholar 

  75. Nanchahal, J., Dover, R., Otto, W.R.: Allogeneic skin substitutes applied to burns patients. Burns 28, 254–257 (2002)

    Google Scholar 

  76. Nardella, A., Chaubet, F., Boisson-Vidal, C., Blondin, C., Duran, P., Jozefonvicz, J.: Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydr. Res. 289, 201–208 (1996)

    Google Scholar 

  77. Ning, L., Quanbin, Z., Jinming, S.: Toxicological evaluation of fucoidan extracted from Laminaria japonica in Wistar rats. Food Chem. Toxicol. 43, 421–426 (2005)

    Google Scholar 

  78. Nishino, T., Fukuda, A., Nagumo, T., Fujihara, M., Kaji, E.: Inhibition of the generation of thrombin and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome. Thromb. Res. 96, 37–49 (1999)

    Google Scholar 

  79. Nishino, T., Nagumo, T.: Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydr. Res. 229, 355–362 (1992)

    Google Scholar 

  80. Nishino, T., Nagumo, T.: Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohydr. Res. 211, 77–90 (1991)

    Google Scholar 

  81. Nishino, T., Yamauchi, T., Horie, M., Nagumo, T., Suzuki, H.: Effects of a fucoidan on the activation of plasminogen by u-PA and t-PA. Thromb. Res. 99, 623–634 (2000)

    Google Scholar 

  82. Oh, J.K., Lee, D.I., Park, J.M.: Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 34(12), 1261–1282 (2009)

    Google Scholar 

  83. O’Neill, A.N.: Degradative studies on fucoidin. J. Am. Chem. Soc. 76, 5074–5076 (1954)

    Google Scholar 

  84. Paños, I., Acosta, N., Heras, A.: New drug delivery systems based on chitosan. Curr. Drug. Discov. Technol. 5(4), 333–341 (2008)

    Google Scholar 

  85. Passaquet, C., Thomas, J.C., Caron, L., Hauswirth, N., Puel, F., Berkaloff, C.: Light-harvesting complexes of brown alage: biochemical characterization and immunological relationships. FEBS 280, 21–26 (1991)

    Google Scholar 

  86. Percival, E., McDowell, R.H.: Sulphated polysaccharides containing neutral sugars: fucoidan. In: Percival, E., McDowell, R.H. (eds.) Chemistry and Enzymology of Marine Algal Polysaccharides, pp. 157–175, Academic Press, London (1967)

    Google Scholar 

  87. Pereira, M.S., Mulloy, B., Mourao, P.A.S.: Structure and anticoagulant activity of sulfated fucans. J. Biol. Chem. 274, 7656–7667 (1999)

    Google Scholar 

  88. Pomin, V.H., Mourão, P.A.: Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 18(12), 1016–1027 (2008)

    Google Scholar 

  89. Provenzano, P.P., Alejandro-Osorio, A.L., Valhmu, W.B., Jensen, K.T., Vanderby, R.: Intrinsic fibroblast-mediated remodeling of damaged collagenous matrices in vivo. Matrix Biol. 23, 543–555 (2005)

    Google Scholar 

  90. Pruitt, B.A., Levine, N.S.: Characteristics and uses of biologic dressings and skin substitutes. Arch. Surg. 119, 312–322 (1984)

    Google Scholar 

  91. Quinn, K.J., Courtney, J.M., Evans, J.H., Gaylor, J.D.S.: Principles of burn dressings. Biomaterials 6, 369–377 (1985)

    Google Scholar 

  92. Ramsden, L., Rider, C.C.: Selective and differential binding of interleukin (IL)-1α, IL-1β, IL-2 and IL-6 to glycosaminoglycans. Eur. J. Immunol. 22, 3027–3031 (1992)

    Google Scholar 

  93. Ruperez, P., Ahrazem, O., Leal, A.: Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 50, 840–845 (2002)

    Google Scholar 

  94. Sai, P., Babu, M.: Collagen based dressings—a review. Burns 26, 54–62 (2000)

    Google Scholar 

  95. Schaeffer, D.J., Krylov, V.S.: Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotox. Environ. Safe. 45, 208–227 (2000)

    Google Scholar 

  96. Scheerlinck, J.P.Y., Casey, G., Mcwaters, P., Kelly, J., Woollard, D., Lightowlers, M.W., Tennent, J.M., Chaplin, P.J.: The immune response to a DNA vaccine can be modulated by co-delivery of cytokine genes using a DNA prime-protein boost strategy. Vaccine 19, 4053–4060 (2001)

    Google Scholar 

  97. Sezer, A.D., Akbuğa, J.: Comparison on in vitro characterization of fucospheres and chitosan microspheres encapsulated plasmid DNA (pGM-CSF): formulation design and release characteristics. AAPS PharmSciTech. 10(4), 1193–1199 (2009)

    Google Scholar 

  98. Sezer, A.D., Akbuğa, J.: Fucosphere—new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J. Microencapsul. 23(5), 513–522 (2006)

    Google Scholar 

  99. Sezer, A.D.: Chitosan: properties and its pharmaceutical and biomedical aspects. In: Davis, S.P. (ed.) Chitosan: Manufacture, Properties, and Usage, 1st edn. Nova Science Publishers, New York (2011)

    Google Scholar 

  100. Sezer, A.D., Cevher, E., Hatipoğlu, F., Oğurtan, Z., Baş, A.L., Akbuğa, J.: Preparation of fucoidan–chitosan hydrogel and its application as burn healing accelerator on rabbits. Biol. Pharm. Bul. 31(12), 2326–2333 (2008)

    Google Scholar 

  101. Sezer, A.D., Cevher, E., Hatipoğlu, F., Oğurtan, Z., Baş, A.L., Akbuğa, J.: The use of fucosphere in the treatment of dermal burns in rabbits. Eur. J. Pharm. Biopharm. 69(1), 189–198 (2008)

    Google Scholar 

  102. Sezer, A.D., HatipoÄŸlu, F., Cevher, E., OÄŸurtan, Z., BaÅŸ, A.L., AkbuÄŸa, J.: Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech. 8(2), Article 39 (2007)

    Google Scholar 

  103. Sezer, A.D., Hatipoğlu, F., Oğurtan, Z., Baş, A.L., Akbuğa, J.: Evaluation of fucoidan—chitosan hydrogels on superficial dermal burn healing in rabbit: an in vivo study. The 12th European Congress on Biotechnology, Copenhagen, 21–24 August 2005

    Google Scholar 

  104. Sezer, A.D., Hatipoğlu, F., Oğurtan, Z., Cevher, E., Baş, A.L., Akbuğa, J.: New nanosphere system for treatment of full-thickness burn on rabbit. The 31st FEBS Congress, Istanbul, 24–29 June 2006

    Google Scholar 

  105. Sezer, A.D., Kazak, H., Toksoy Öner, E., Akbuğa, J.: Levan as a promising biomaterial for protein delivery. 36th Annual Meeting and Exposition of the Controlled Release Society, Copenhagen, 18–22 July 2009

    Google Scholar 

  106. Shakespeare, P.: Burn wound healing and skin substitutes. Burns 27, 517–522 (2001)

    Google Scholar 

  107. Shi, C., Zhu, Y., Ran, X., Wang, M., Su, Y., Cheng, T.: Therapeutic potential of chitosan and its derivatives in regenerative medicine. J. Surg. Res. 133(2), 185–192 (2006)

    Google Scholar 

  108. Shigemasa, Y., Minami, S.: Applications of chitin and chitosan for biomaterials. Biotechnol. Genet. Eng. Rev. 13, 383–420 (1995)

    Google Scholar 

  109. Shu, X.Z., Zhu, K.J., Song, W.: Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm. 212, 19–28 (2001)

    Google Scholar 

  110. Singer, A.J., Mohammad, M., Thode, H.C., Mcclain, S.A.: Octylcyanoacrylate versus polyurethane for treatment of burns in swine: a randomized trail. Burns 26, 388–392 (2000)

    Google Scholar 

  111. Skinner, M.P., Lucas, C.M., Burns, G.F., Chesterman, C.N., Berndt, M.C.: GMP-140 binding to neutrophils is inhibited by sulfated glycans. J. Biol. Chem. 266, 5371–5374 (1991)

    Google Scholar 

  112. Smart, J.D.: The basics and underlying mechanisms of mucoadhesion. Adv. Drug. Deliver. Rev. 57, 1556–1568 (2005)

    Google Scholar 

  113. Smelcerovic, A., Knezevic-Jugovic, Z., Petronijevic, Z.: Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr. Pharm. Des. 14(29), 3168–3195 (2008)

    Google Scholar 

  114. Soeda, S., Fujii, N., Shimeno, H., Nagamatsu, A.: Oversulfated fucoidan and heparin suppress endotoxin induction of plasminogen activator inhibitor-1 in cultured human endothelial cells: their possible mechanism of action. BBA 1269, 85–90 (1995)

    Google Scholar 

  115. Soeda, S., Kozako, T., Iwata, K., Shimeno, H.: Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: its possible mechanism of action. BBA 1497, 127–134 (2000)

    Google Scholar 

  116. Soeda, S., Sakaguchi, S., Shimeno, H., Nagamatsu, A.: Fibrinolytic and anticoagulant activities of highly sulfated fucoidan. Biochem. Pharmacol. 43, 1853–1858 (1992)

    Google Scholar 

  117. Stashak, T.S., Farstvedt, E., Othic, A.: Update on wound dressings: indications and best use. Clin. Tech. Equine Pract. 3, 148–163 (2004)

    Google Scholar 

  118. Tan, W., Krishnaraj, R., Desai, T.A.: Evaluation of nanostructured composite collagen-chitosan matrices for tissue engineering. Tissue Eng. 7, 203–210 (2001)

    Google Scholar 

  119. Trere, D.: AgNOR staining and quantification. Micron 31, 127–131 (2000)

    Google Scholar 

  120. Uebersax, L., Merkle, H.P., Meinel, L.: Biopolymer-based growth factor delivery for tissue repair: from natural concepts to engineered systems. Tissue Eng. Part B Rev. 15(3), 263–289 (2009)

    Google Scholar 

  121. Ueno, H., Mori, T., Fujinaga, T.: Topical formulation and wound healing applications of chitosan. Adv. Drug Delivery Rev. 52, 105–115 (2001)

    Google Scholar 

  122. Venkateswaran, P.S., Millman, I., Blumberg, B.S.: Interaction of fucoidan from Pelvetia fastigiata with surface antigens of hepatitis B and woodchuck hepatitis viruses. Planta Med. 55, 265–270 (1989)

    Google Scholar 

  123. Vinsova, J., Vavrikova, E.: Recent advances in drugs and prodrugs design of chitosan. Curr. Pharm. Des. 14(13), 1311–1326 (2008)

    Google Scholar 

  124. Vischer, P., Buddecke, E.: Different action of heparin and fucoidan on arterial smooth muscle cell proliferation and thrombospondin and fibronectin metabolism. Eur. J. Cell Biol. 56, 407–414 (1991)

    Google Scholar 

  125. Vloemans, A.F.P.M., Soesman, A.M., Kreis, R.W., Middelkoop, E.: A newly developed hydrofibre dressing, in the treatment of partial-thickness burns. Burns 27, 167–173 (2001)

    Google Scholar 

  126. Willenborg, D.O., Parish, C.R.: Inhibition of allergic encephalomyelitis in rats by treatment with sulfated polysaccharides. J. Immunol. 140, 3401–3405 (1988)

    Google Scholar 

  127. Wittaya-Areekul, S., Prahsarn, C.: Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings. Int. J. Pharm. 313, 123–128 (2006)

    Google Scholar 

  128. Wong, C.F., Yeun, K.H., Peh, K.K.: Formulation and evaluation of controlled release Eudragit buccal patches. Int. J. Pharm. 178, 11–22 (1999)

    Google Scholar 

  129. Yiu Leung, T.C., Wong, C.K., Xie, Y.: Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan. Mater. Chem. Phys. 121, 402–405 (2010)

    Google Scholar 

  130. Yurt, R.M.: Burns. In: Norton, J.A. (ed.) Essential Practice of Surgery: Basic Science and Clinical Evidence, pp. 119–126, Springer-Verlag, New York (2003)

    Google Scholar 

  131. Zhu, Z., Zhang, Q., Chen, L., Ren, S., Xu, P., Tang, Y., Luo, D.: Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb. Res. 125, 419–426 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Demir Sezer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sezer, A.D., Cevher, E. (2011). Fucoidan: A Versatile Biopolymer for Biomedical Applications. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_67

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics