Skip to main content

Tissue Engineering Approaches for Myocardial Bandage: Focus on Hydrogel Constructs

  • Chapter
  • First Online:
Myocardial Tissue Engineering

Abstract

Myocardial tissue engineering ambitions to regenerate, repair or replace damaged cardiac muscle by combining cellular and engineering technologies. Several issues must be addressed before this approach may one day find clinical applications for cardiac disorders such as congenital diseases or ventricular dysfunction following myocardial infarction for example. The chance of the myocardial tissue engineering approach is nevertheless real. Indeed, on the one hand, several clinical studies have recently confirmed the positive effect of stem cell therapy in patients with heart failure. On the other hand, research from several laboratories have demonstrated over the past decade that engineered muscle tissues can be created and successfully applied in models of myocardial injury. Engineering a functional myocardial graft faces with many challenges, and various approaches have been investigated. In the current chapter, we focus our review on hydrogel-based engineered tissues for myocardial application. The literature on injectable and implantable hydrogel constructs is discussed and an overview of our own experience is presented. We emphasize important aspects on development of hydrogel constructs in particular the mechanical and electrical conditioning of the construct as well as smart hydrogels.

None of the authors have conflict of interest to disclose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation (WHO) (2004) http://www.who.int/topics/cardiovascular_diseases/en

  2. Bar, A., Haverich, A., Hilfiker, A.: Cardiac tissue engineering: ā€œreconstructing the motor of lifeā€. Scand. J. Surg. 96, 154ā€“158 (2007)

    Google ScholarĀ 

  3. Gammie, J.S., Sheng, S., Griffith, B.P., Peterson, E.D., Rankin, J.S., Oā€™Brien, S.M., Brown, J.M.: Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 87, 1431ā€“1437 (2009). Discussion 1437ā€“1439

    ArticleĀ  Google ScholarĀ 

  4. Zimmermann, W.H., Cesnjevar, R.: Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr. Cardiol. 30, 716ā€“723 (2009)

    ArticleĀ  Google ScholarĀ 

  5. Walsh, R.G.: Design and features of the Acorn CorCap cardiac support device: the concept of passive mechanical diastolic support. Heart Fail. Rev. 10, 101ā€“107 (2005)

    ArticleĀ  Google ScholarĀ 

  6. Anstadt, G.L., Blakemore, W.S., Baue, A.E.: A new instrument for prolonged mechanical massage. Circulation 31, S2ā€“S43 (1965)

    Google ScholarĀ 

  7. Wang, Q., Yambe, T., Shiraishi, Y., Duan, X., Nitta, S., Tabayashi, K., Umezu, M.: An artificial myocardium assist system: electrohydraulic ventricular actuation improves myocardial tissue perfusion in goats. Artif. Organs 28, 853ā€“857 (2004)

    ArticleĀ  Google ScholarĀ 

  8. Mann, D.L., Acker, M.A., Jessup, M., Sabbah, H.N., Starling, R.C., Kubo, S.H.: Clinical evaluation of the CorCap Cardiac Support Device in patients with dilated cardiomyopathy. Ann. Thorac. Surg. 84, 1226ā€“1235 (2007)

    ArticleĀ  Google ScholarĀ 

  9. Furnary, A.P., Chachques, J.C., Moreira, L.F., Grunkemeier, G.L., Swanson, J.S., Stolf, N., Haydar, S., Acar, C., Starr, A., Jatene, A.D., Carpentier, A.F.: Long-term outcome, survival analysis, and risk stratification of dynamic cardiomyoplasty. J. Thorac. Cardiovasc. Surg. 112, 1640ā€“1649 (1996). discussion 1649ā€“1650

    ArticleĀ  Google ScholarĀ 

  10. Chachques, J.C., Salanson-Lajos, C., Lajos, P., Shafy, A., Alshamry, A., Carpentier, A.: Cellular cardiomyoplasty for myocardial regeneration. Asian Cardiovasc. Thorac. Ann. 13, 287ā€“296 (2005)

    Google ScholarĀ 

  11. Tamareille, S., Achour, H., Amirian, J., Felli, P., Bick, R.J., Poindexter, B., Geng, Y.J., Barry, W.H., Smalling, R.W.: Left ventricular unloading before reperfusion reduces endothelin-1 release and calcium overload in porcine myocardial infarction. J. Thorac. Cardiovasc. Surg. 136, 343ā€“351 (2008)

    ArticleĀ  Google ScholarĀ 

  12. Blom, A.S., Pilla, J.J., Gorman 3rd, R.C., Gorman, J.H., Mukherjee, R., Spinale, F.G., Acker, M.A.: Infarct size reduction and attenuation of global left ventricular remodeling with the CorCap cardiac support device following acute myocardial infarction in sheep. Heart Fail. Rev. 10, 125ā€“139 (2005)

    ArticleĀ  Google ScholarĀ 

  13. Brinks, H., Tevaearai, H., Muhlfeld, C., Bertschi, D., Gahl, B., Carrel, T., Giraud, M.N.: Contractile function is preserved in unloaded hearts despite atrophic remodeling. J. Thorac. Cardiovasc. Surg. 137, 742ā€“746 (2009)

    ArticleĀ  Google ScholarĀ 

  14. Tevaearai, H.T., Eckhart, A.D., Walton, G.B., Keys, J.R., Wilson, K., Koch, W.J.: Myocardial gene transfer and overexpression of beta2-adrenergic receptors potentiates the functional recovery of unloaded failing hearts. Circulation 106, 124ā€“129 (2002)

    ArticleĀ  Google ScholarĀ 

  15. Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., Jovinge, S., Frisen, J.: Evidence for cardiomyocyte renewal in humans. Science 324, 98ā€“102 (2009)

    ArticleĀ  Google ScholarĀ 

  16. Passier, R., van Laake, L.W., Mummery, C.L.: Stem-cell-based therapy and lessons from the heart. Nature 453, 322ā€“329 (2008)

    ArticleĀ  Google ScholarĀ 

  17. Zaruba, M.M., Franz, W.M.: Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opin. Biol. Ther. 10, 321ā€“335 (2010)

    ArticleĀ  Google ScholarĀ 

  18. Banfi, A., von Degenfeld, G., Blau, H.M.: Critical role of microenvironmental factors in angiogenesis. Curr. Atheroscler. Rep. 7, 227ā€“234 (2005)

    ArticleĀ  Google ScholarĀ 

  19. Giraud, M.N., Armbruster, C., Carrel, T., Tevaearai, H.T.: Current state of the art in myocardial tissue engineering. Tissue Eng. 13, 1825ā€“1836 (2007)

    ArticleĀ  Google ScholarĀ 

  20. Ryu, J.H., Kim, I.K., Cho, S.W., Cho, M.C., Hwang, K.K., Piao, H., Piao, S., Lim, S.H., Hong, Y.S., Choi, C.Y., Yoo, K.J., Kim, B.S.: Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26, 319ā€“326 (2005)

    ArticleĀ  Google ScholarĀ 

  21. Christman, K.L., Fok, H.H., Sievers, R.E., Fang, Q., Lee, R.J.: Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10, 403ā€“409 (2004)

    ArticleĀ  Google ScholarĀ 

  22. Huang, N.F., Yu, J., Sievers, R., Li, S., Lee, R.J.: Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 11, 1860ā€“1866 (2005)

    ArticleĀ  Google ScholarĀ 

  23. Engler, A.J., Griffin, M.A., Sen, S., Bonnemann, C.G., Sweeney, H.L., Discher, D.E.: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877ā€“887 (2004)

    ArticleĀ  Google ScholarĀ 

  24. Li, X.Y., Wang, T., Jiang, X.J., Lin, T., Wu, D.Q., Zhang, X.Z., Okello, E., Xu, H.X., Yuan, M.J.: Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 115, 194ā€“199 (2010)

    ArticleĀ  Google ScholarĀ 

  25. Yoon, S.J., Fang, Y.H., Lim, C.H., Kim, B.S., Son, H.S., Park, Y., Sun, K.: Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J. Biomed. Mater. Res. B Appl. Biomater 91, 163ā€“171 (2009)

    Google ScholarĀ 

  26. Lu, W.N., Lu, S.H., Wang, H.B., Li, D.X., Duan, C.M., Liu, Z.Q., Hao, T., He, W.J., Xu, B., Fu, Q., Song, Y.C., Xie, X.H., Wang, C.Y.: Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng. Part A 15, 1437ā€“1447 (2009)

    ArticleĀ  Google ScholarĀ 

  27. Martens, T.P., Godier, A.F., Parks, J.J., Wan, L.Q., Koeckert, M.S., Eng, G.M., Hudson, B.I., Sherman, W., Vunjak-Novakovic, G.: Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant. 18, 297ā€“304 (2009)

    ArticleĀ  Google ScholarĀ 

  28. Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., Petnehazy, O., Landa, N., Feinberg, M.S., Konen, E., Goitein, O., Tsur-Gang, O., Shaul, M., Klapper, L., Cohen, S.: Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J. Am. Coll. Cardiol. 54, 1014ā€“1023 (2009)

    ArticleĀ  Google ScholarĀ 

  29. Seif-Naraghi, S.B., Salvatore, M.A., Schup-Magoffin, P.J., Hu, D.P., Christman, K.L.: Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng. Part A 16, 2017ā€“2027 (2010)

    ArticleĀ  Google ScholarĀ 

  30. Singelyn, J.M., DeQuach, J.A., Seif-Naraghi, S.B., Littlefield, R.B., Schup-Magoffin, P.J., Christman, K.L.: Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30, 5409ā€“5416 (2009)

    ArticleĀ  Google ScholarĀ 

  31. Zhang, P., Zhang, H., Wang, H., Wei, Y., Hu, S.: Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif. Organs 30, 86ā€“93 (2006)

    ArticleĀ  Google ScholarĀ 

  32. Kofidis, T., Lebl, D.R., Martinez, E.C., Hoyt, G., Tanaka, M., Robbins, R.C.: Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112, I173ā€“I177 (2005)

    Google ScholarĀ 

  33. Eschenhagen, T., Didie, M., Munzel, F., Schubert, P., Schneiderbanger, K., Zimmermann, W.H.: 3D engineered heart tissue for replacement therapy. Basic Res. Cardiol. 97(Suppl 1), I146ā€“I152 (2002)

    Google ScholarĀ 

  34. Jaconi (MEEG, CH), Zammaretti-schaer (PK, CH): 3D-Cardiac Tissue Engineering For the Cell Therapy of Heart Failure. US (2008)

    Google ScholarĀ 

  35. Kraehenbuehl, T.P., Zammaretti, P., Van der Vlies, A.J., Schoenmakers, R.G., Lutolf, M.P., Jaconi, M.E., Hubbell, J.A.: Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29, 2757ā€“2766 (2008)

    ArticleĀ  Google ScholarĀ 

  36. Powell, C.A., Smiley, B.L., Mills, J., Vandenburgh, H.H.: Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol. 283, C1557ā€“C1565 (2002)

    Google ScholarĀ 

  37. Giraud, M.N., Ayuni, E., Cook, S., Siepe, M., Carrel, T.P., Tevaearai, H.T.: Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif. Organs 32, 692ā€“700 (2008)

    ArticleĀ  Google ScholarĀ 

  38. Strohman, R.C., Bayne, E., Spector, D., Obinata, T., Micou-Eastwood, J., Maniotis, A.: Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell. Dev. Biol. 26, 201ā€“208 (1990)

    ArticleĀ  Google ScholarĀ 

  39. Dennis, R.G., Kosnik, P.E.: Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev. Biol. Anim. 36, 327ā€“335 (2000)

    ArticleĀ  Google ScholarĀ 

  40. Huang, Y.C., Dennis, R.G., Larkin, L., Baar, K.: Rapid formation of functional muscle in vitro using fibrin gels. J. Appl. Physiol. 98, 706ā€“713 (2005)

    ArticleĀ  Google ScholarĀ 

  41. Huang, Y.C., Khait, L., Birla, R.K.: Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J. Biomed. Mater. Res. A 80, 719ā€“731 (2007)

    Google ScholarĀ 

  42. Giraud, M.N., Siepe, M., Ayuni, E., Tevaearai, H.T., Carrel, T.: A hydrogen based engineered skeletal muscle graft (ESMG) for cardiac repair. FASEB J. 19, A1659 (2005)

    Google ScholarĀ 

  43. Kosnik, P.E., Dennis, R.G.: Mesenchymal cell culture: functional mammalian skeletal muscle constructs. In: Atala, A., Lanza, R. (eds.) Methods Tissue Eng., pp. 303ā€“305. Academic Press, San Diego (2002)

    Google ScholarĀ 

  44. Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., Hess, A., Budinsky, L., Brune, K., Michaelis, B., Dhein, S., Schwoerer, A., Ehmke, H., Eschenhagen, T.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12, 452ā€“458 (2006)

    ArticleĀ  Google ScholarĀ 

  45. Miyagawa, S., Sawa, Y., Sakakida, S., Taketani, S., Kondoh, H., Memon, I.A., Imanishi, Y., Shimizu, T., Okano, T., Matsuda, H.: Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation 80, 1586ā€“1595 (2005)

    ArticleĀ  Google ScholarĀ 

  46. Birla, R., Dhawan, V., Huang, Y.C., Lytle, I., Tiranathanagul, K., Brown, D.: Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities. Artif. Organs 32, 684ā€“691 (2008)

    ArticleĀ  Google ScholarĀ 

  47. Huang, Y.C., Khait, L., Birla, R.K.: Modulating the functional performance of bioengineered heart muscle using growth factor stimulation. Ann. Biomed. Eng. 36, 1372ā€“1382 (2008)

    ArticleĀ  Google ScholarĀ 

  48. Birla, R.K., Huang, Y.C., Dennis, R.G.: Effect of streptomycin on the active force of bioengineered heart muscle in response to controlled stretch. In Vitro Cell Dev Biol Anim 44, 253ā€“260 (2008)

    ArticleĀ  Google ScholarĀ 

  49. Fink, C., Ergun, S., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T.: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. Faseb J 14, 669ā€“679 (2000)

    Google ScholarĀ 

  50. Terracio, L., Miller, B., Borg, T.K.: Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell. Dev. Biol. 24, 53ā€“58 (1988)

    ArticleĀ  Google ScholarĀ 

  51. Katare R.G., Ando M., Kakinuma, Y., Sato, T.: Engineered heart tissue: a novel tool to study the ischemic changes of the heart in vitro. PLoS One 5, e9275

    Google ScholarĀ 

  52. Luther, H.P., Hille, S., Haase, H., Morano, I.: Influence of mechanical activity, adrenergic stimulation, and calcium on the expression of myosin heavy chains in cultivated neonatal cardiomyocytes. J. Cell. Biochem. 64, 458ā€“465 (1997)

    ArticleĀ  Google ScholarĀ 

  53. Ruwhof, C., van Wamel, A.E., Egas, J.M., van der Laarse, A.: Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol. Cell. Biochem. 208, 89ā€“98 (2000)

    ArticleĀ  Google ScholarĀ 

  54. Klossner, S., Durieux, A.C., Freyssenet, D., Flueck, M.: Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur. J. Appl. Physiol. 106, 389ā€“398 (2009)

    ArticleĀ  Google ScholarĀ 

  55. Zimmermann, W.H., Melnychenko, I., Eschenhagen, T.: Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25, 1639ā€“1647 (2004)

    ArticleĀ  Google ScholarĀ 

  56. Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., Eschenhagen, T.: Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223ā€“230 (2002)

    ArticleĀ  Google ScholarĀ 

  57. Boublik, J., Park, H., Radisic, M., Tognana, E., Chen, F., Pei, M., Vunjak-Novakovic, G., Freed, L.E.: Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng. 11, 1122ā€“1132 (2005)

    ArticleĀ  Google ScholarĀ 

  58. Akhyari, P., Fedak, P.W., Weisel, R.D., Lee, T.Y., Verma, S., Mickle, D.A., Li, R.K.: Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106, I137ā€“I142 (2002)

    ArticleĀ  Google ScholarĀ 

  59. Lee, A.A., Delhaas, T., Waldman, L.K., MacKenna, D.A., Villarreal, F.J., McCulloch, A.D.: An equibiaxial strain system for cultured cells. Am. J. Physiol. 271, C1400ā€“C1408 (1996)

    Google ScholarĀ 

  60. Birla, R.K., Huang, Y.C., Dennis, R.G.: Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Eng. 13, 2239ā€“2248 (2007)

    ArticleĀ  Google ScholarĀ 

  61. Pang, Q., Zu, J.W., Siu, G.M., Li, R.K.: Design and development of a novel biostretch apparatus for tissue engineering. J. Biomech. Eng. 132, 014503 (2010)

    ArticleĀ  Google ScholarĀ 

  62. Barron, V., Lyons, E., Stenson-Cox, C., McHugh, P.E., Pandit, A.: Bioreactors for cardiovascular cell and tissue growth: a review. Ann. Biomed. Eng. 31, 1017ā€“1030 (2003)

    ArticleĀ  Google ScholarĀ 

  63. Lee, E.L., von Recum, H.A.: Cell culture platform with mechanical conditioning and nondamaging cellular detachment. J. Biomed. Mater. Res. A 93, 411ā€“418 (2010)

    Google ScholarĀ 

  64. Brown, T.D.: Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33, 3ā€“14 (2000)

    ArticleĀ  Google ScholarĀ 

  65. Ashikaga, H., Covell, J.W., Omens, J.H.: Diastolic dysfunction in volume-overload hypertrophy is associated with abnormal shearing of myolaminar sheets. Am. J. Physiol. Heart Circ. Physiol. 288, H2603ā€“H2610 (2005)

    ArticleĀ  Google ScholarĀ 

  66. Omens, J.H.: Stress and strain as regulators of myocardial growth. Prog. Biophys. Mol. Biol. 69, 559ā€“572 (1998)

    ArticleĀ  Google ScholarĀ 

  67. Gonen-Wadmany, M., Gepstein, L., Seliktar, D.: Controlling the cellular organization of tissue-engineered cardiac constructs. Ann. N. Y. Acad. Sci. 1015, 299ā€“311 (2004)

    ArticleĀ  Google ScholarĀ 

  68. Giraud, M.N., Bertschi, D., Guex, G., NƤther, S., Fortunato, G., Carrel, T.P., Tevaearai, H.T.: A new stretching bioreactor for dynamic engineering of muscle tissues. In: Cikirikcioglu, M. (ed.) 45th Congress of the European Society for Surgical Research, pp. 33ā€“36. Medimond International Proceedings, Geneva (2010)

    Google ScholarĀ 

  69. Giridharan, G.A., Nguyen, M.D., Estrada, R., Parichehreh, V., Hamid, T., Ismahil, M.A., Prabhu, S.D., Sethu, P.: Microfluidic cardiac cell culture model (muCCCM). Anal. Chem. 82, 7581ā€“7587

    Google ScholarĀ 

  70. Tandon, N., Cannizzaro, C., Chao, P.H., Maidhof, R., Marsano, A., Au, H.T., Radisic, M., Vunjak-Novakovic, G.: Electrical stimulation systems for cardiac tissue engineering. Nat. Protoc. 4, 155ā€“173 (2009)

    ArticleĀ  Google ScholarĀ 

  71. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101, 18129ā€“18134 (2004)

    ArticleĀ  Google ScholarĀ 

  72. Moon du, G., Christ, G., Stitzel, J.D., Atala, A., Yoo, J.J.: Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng. Part A 14, 473ā€“482 (2008)

    ArticleĀ  Google ScholarĀ 

  73. Serena, E., Flaibani, M., Carnio, S., Boldrin, L., Vitiello, L., De Coppi, P., Elvassore, N.: Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurol. Res. 30, 207ā€“214 (2008)

    ArticleĀ  Google ScholarĀ 

  74. Coghlan, H.C., Coghlan, A.R., Buckberg, G.D., Cox, J.L.: ā€˜The electrical spiral of the heartā€™: its role in the helical continuum The hypothesis of the anisotropic conducting matrix. Eur. J. Cardiothorac. Surg. 29(Suppl 1), S178ā€“S187 (2006)

    ArticleĀ  Google ScholarĀ 

  75. MacDonald, R.A., Voge, C.M., Kariolis, M., Stegemann, J.P.: Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels. Acta Biomater. 4, 1583ā€“1592 (2008)

    ArticleĀ  Google ScholarĀ 

  76. Vandenburgh, H., Shansky, J., Benesch-Lee, F., Barbata, V., Reid, J., Thorrez, L., Valentini, R., Crawford, G.: Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37, 438ā€“447 (2008)

    ArticleĀ  Google ScholarĀ 

  77. Tessmar, J.K., Gopferich, A.M.: Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Deliv. Rev. 59, 274ā€“291 (2007)

    ArticleĀ  Google ScholarĀ 

  78. Phelps, E.A., Landazuri, N., Thule, P.M., Taylor, W.R., Garcia, A.J.: Regenerative Medicine Special Feature: Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. USA 107, 3323ā€“3328 (2010)

    ArticleĀ  Google ScholarĀ 

  79. Sakakibara, Y., Nishimura, K., Tambara, K., Yamamoto, M., Lu, F., Tabata, Y., Komeda, M.: Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. J. Thorac. Cardiovasc. Surg. 124, 50ā€“56 (2002)

    ArticleĀ  Google ScholarĀ 

  80. Kobayashi, H., Minatoguchi, S., Yasuda, S., Bao, N., Kawamura, I., Iwasa, M., Yamaki, T., Sumi, S., Misao, Y., Ushikoshi, H., Nishigaki, K., Takemura, G., Fujiwara, T., Tabata, Y., Fujiwara, H.: Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovasc. Res. 79, 611ā€“620 (2008)

    ArticleĀ  Google ScholarĀ 

  81. Miyagi, Y., Zeng, F., Huang, X.P., Foltz, W.D., Wu, J., Mihic, A., Yau, T.M., Weisel, R.D., Li, R.K.: Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold. Biomaterials 31, 7684ā€“7694 (2010)

    ArticleĀ  Google ScholarĀ 

  82. Landa, N., Miller, L., Feinberg, M.S., Holbova, R., Shachar, M., Freeman, I., Cohen, S., Leor, J.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117, 1388ā€“1396 (2008)

    ArticleĀ  Google ScholarĀ 

  83. Dobner, S., Bezuidenhout, D., Govender, P., Zilla, P., Davies, N.: A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J. Card. Fail. 15, 629ā€“636 (2009)

    ArticleĀ  Google ScholarĀ 

  84. Wang, T., Wu, D.Q., Jiang, X.J., Zhang, X.Z., Li, X.Y., Zhang, J.F., Zheng, Z.B., Zhuo, R., Jiang, H., Huang, C.: Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur. J. Heart Fail. 11, 14ā€“19 (2009)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

We thank Ms Laura Graham for excellent assistance in manuscript preparation, Ms Concetina Receputo and amd Mr Gilles Godar for excellent technical assistance. The research investigations were support by grants from the Swiss National Science Foundation (3200B0-108417 and 122334)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Noƫlle Giraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giraud, M.N., Tevaearai, H. (2010). Tissue Engineering Approaches for Myocardial Bandage: Focus on Hydrogel Constructs. In: Boccaccini, A., Harding, S. (eds) Myocardial Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_43

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18055-2

  • Online ISBN: 978-3-642-18056-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics