Cytoskeletal Mechanics and Cellular Mechanotransduction: A Molecular Perspective

  • Hamed Hatami-MarbiniEmail author
  • Mohammad R. K. Mofrad
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 4)


Cells are highly complex structures with unique physiology and biomechanical properties. A multiscale multiphysics methodology is required to properly understand the intrinsically coupled mechanobiology of the cell and describe its macroscopic response to externally applied stresses. This indeed is both a challenge and an excellent research opportunity. This chapter reviews the latest advancements in this field by bringing together the recent experimental and theoretical studies on the cytoskeletal rheology and mechanics as well as the dynamic response of the cell to environmental stimuli. The experimental observations along with computational approaches used to study the mechanical properties of the individual constituents of the cytoskeleton are first presented. Various computational models are then discussed ranging from discrete filamentous models to continuum level models developed to capture the highly dynamic and constantly changing properties of the cells to external and internal stimuli. Finally, the concept of cellular mechanotransduction is discussed as an essential function of the cell wherein the cytoskeleton plays a key role.


Actin Filament Intermediate Filament Stress Fiber Myosin Head Persistence Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Straub, F.B. In: Szent-Györgi (ed.) Studies Inst. Med. Chem. Univ. Szeged 2, 3–15 (1942)Google Scholar
  2. 2.
    Doi, M., Edwards, S.F.: The theory of polymer dynamics, Clarendon Press, Oxford (1988)Google Scholar
  3. 3.
    Oosawa, F.: Actin–actin bond strength and the conformational change of f-actin. Biorheology 14, 11–19 (1977)Google Scholar
  4. 4.
    Yanagida, T., Nakase, N., Nishiyama, K., Oosawa, F.: Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60 (1984)Google Scholar
  5. 5.
    Takebayashi, T., Morita, Y., Oosawa, F.: Electron microscopic investigation of the flexibility of F-actin, Biochim. Biophys. Acta 492, 357–363 (1977)Google Scholar
  6. 6.
    Ishijima, A., Doi, T., Sakurada, K., Yanagida, T.: Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352, 301–206 (1991)Google Scholar
  7. 7.
    Gittes, F., Mickney, B., Nettleton, J., Howard, J.: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–924 (1993)Google Scholar
  8. 8.
    Kas, J., Strey, H., Barmann, M., Sackmann, E.: Direct measurement of the wave-vector-dependent bending stiffness of freely flickering actin filaments. Europhys. Lett. 21(8), 865–870 (1993)Google Scholar
  9. 9.
    Ott, A., Magnasco, M., Simon, A., Libchaber, A.: Measurement of the persistence length of polymerized actin using fluorescence microscopy, Phys. Rev. E 48(3), R1642–R1645 (1993)Google Scholar
  10. 10.
    MacKintosh, F.C., Kas, J., Janmey, P.A.: Elasticity of semiflexible biopolymer networks, Phys. Rev. Lett. 75(24), 4425–4429 (1995)Google Scholar
  11. 11.
    Kojima, H., Ishijima, A., Yanagida, T.: Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation, Proc. Natl. Acad. Sci., 12962–12966 (1994)Google Scholar
  12. 12.
    Liu X., Pollack, G.H.: Mechanics of F-actin characterized with microfabricated cantilevers, Biophys. J. 83, 2705–2715 (2002)Google Scholar
  13. 13.
    Dupuis, D.E., Guilford, W.H., Wu, J., Warshaw, D.M.: Actin filament mechanics in the laser trap, J. Muscle Res. Cell Motil. 18, 17–30 (1997)Google Scholar
  14. 14.
    Isambert, H., Venier, P., Maggs, A.C., Fattoum, A., Kassab, R., Pantaloni, D., Carlier, M.F.: Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins, J. Biol. Chem. 270, 11437–11444 (1995)Google Scholar
  15. 15.
    Steinmetz, M.O., Goldie, K.N., Aebi, U.: A correlative analysis of actin filament assembly, structure, and dynamics, J. Cell Biol. 138, 559–574 (1997)Google Scholar
  16. 16.
    Yasuda, R., Miyata, H., Kinosita, K.: Direct measurement of the torsional rigidity of single actin filaments. J. Mol. Biol. 263, 227–236 (1996)Google Scholar
  17. 17.
    Orlova, A., Egelman, E.H.: A conformational change in the actin subunit can change the flexibility of the actin filament. J. Mol. Biol. 232, 334–341 (1993)Google Scholar
  18. 18.
    Egelman, E., Orlova, A.: New insights into actin filament dynamics. Curr. Opin. Cell Biol. 5, 172–180 (1995)Google Scholar
  19. 19.
    Yanagida, T., Oosawa, F.: Polarized fluorescence from e-ADP incorporated into F-actin in a myosin-free single fiber: conformation of F-actin and change induced in it by heavy meromyosin, J. Mol. Biol. 126, 507–524 (1978)Google Scholar
  20. 20.
    Howard, J., Hudspeth, A.J.: Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell, Proc. Natl. Acad. Sci. USA 84, 3064–3068 (1987)Google Scholar
  21. 21.
    Tilney, L.G., Saunders, J.C., Egelman, E.H., DeRosier, D.J.: Changes in the organization of actin filaments in the stereocilia of noise damages lizard cochlea, Hear. Res. 7, 181–198 (1982)Google Scholar
  22. 22.
    Ming, D., Kong, Y., Wu, Y., Ma, J.: Simulation of F-actin filaments of several microns, Biochem. J. 85, 27–35 (2003)Google Scholar
  23. 23.
    Chu, J.W., Voth, G.A.: Allostery of actin filaments molecular dynamics simulations and coarse-grained analysis. Proc. Natl. Acad. Sci. USA. 102, 13111–13116 (2005)Google Scholar
  24. 24.
    Chu, J.W., Voth, G.A.: Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 90, 1572–1582 (2006)Google Scholar
  25. 25.
    Paula, D.M., Squireb, J.M., Morris, E.P.: A novel approach to the structural analysis of partially decorated actin based filaments. J. Struct. Biol. 170, 278–285 (2010)Google Scholar
  26. 26.
    Pfaendtner, J., Lyman, E., Pollard, T.D., Voth, G.A.: Structure and dynamics of the actin filament. J. Mol. Biol. 396(2), 252–263 (2010)Google Scholar
  27. 27.
    Huxley, H.E.: X-ray analysis and the problem of muscle. Proc. R. Soc. Lond. Ser. B 141, 59–62 (1953)Google Scholar
  28. 28.
    Huxley, H.E.: Electron microscope studies of the organisation of the filaments in striated muscle. Biochim. Biophys. Acta 12, 387–394 (1953)Google Scholar
  29. 29.
    Hanson, J., Lowy, J.: The structure of F-actin and of actin filaments isolated from muscle. J. Mol. Biol. 6, 46–60 (1963)Google Scholar
  30. 30.
    Moore, P.B., Huxley H.E., DeRosier, D.J.: Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J. Mol. Biol. 50, 279–295 (1970)Google Scholar
  31. 31.
    DeRosier, D.J., Moore, P.B.: Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52, 355–369 (1970)Google Scholar
  32. 32.
    Egelman, E.H.: The structure of F-actin, J. Muscle Res. Cell Motil. 6, 129–151 (1985)Google Scholar
  33. 33.
    Holmes, K.C., Popp, D., Gebhard, W., Kabsch, W.: Atomic model of the actin filament. Nature 347, 44–49 (1990)Google Scholar
  34. 34.
    Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F., Holmes, K. C.: Atomic structure of the actin: DNase I complex. Nature 347, 37–44 (1990)Google Scholar
  35. 35.
    Oda, T., Iwasa, M., Aihara, T., Maeda, Y., Narita, A.: The nature of the globular- to fibrous-actin transition. Nature 457, 441–445 (2009)Google Scholar
  36. 36.
    Holmes, K.C.: Structural biology: actin in a twist. Nature 457, 389–390 (2009)Google Scholar
  37. 37.
    Wittmann, T., Hyman, A., Desai, A.: The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol. 3, E28–E34 (2001)Google Scholar
  38. 38.
    Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312, 237–242 (1984)Google Scholar
  39. 39.
    Janson, M.E., Dogterom, M.: A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. Biophys. J. 87, 2723–2736 (2004)Google Scholar
  40. 40.
    Diaz, J.F., Valpuesta, J.M., Chacon, P., Diakun, G., Andreu, J.M.: Changes in microtubule protofilament number induced by Taxol binding to an easily accessible site. J. Biol. Chem. 273, 33803–33810 (1998)Google Scholar
  41. 41.
    Hawkins, T., Mirigian, M., Yasar, M.S., Ross, J.L.: Mechanics of microtubules. J. Biomech. 43, 23–30 (2010)Google Scholar
  42. 42.
    Bicek, A.D., Tuzel, E., Kroll, D.M., Odde, D.J.: Analysis of microtubule curvature. Methods Cell Biol. 83, 237–268 (2007)Google Scholar
  43. 43.
    Kasas, S., Dietler, G.: Techniques for measuring microtubule stiffness. Curr. Nanosci. 3, 79–96 (2007)Google Scholar
  44. 44.
    Gardel, M.L., Kasza, K.E., Brangwynne, C.V.P., Liu, J., Weitz, D.A.: Mechanical response of cytoskeletal networks. Methods Cell Biol. 89, 487–518 (2008)Google Scholar
  45. 45.
    Kurachi, M., Hoshi, M., Tashiro, H.: Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil. Cytoskeleton 30, 221–228 (1995)Google Scholar
  46. 46.
    Felgner, H., Frank, R., Schliwa, M.: Flexural rigidity of microtubules measured with the use of optical tweezers. J. Cell Sci. 109, 509–516 (1996)Google Scholar
  47. 47.
    Felgner, H., Frank, R., Biernat, J., Mandelkow, E.M., Mandelkow, E., Ludin, B., Matus, A., Schliwa, M.: Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J. Cell Biol. 138, 1067–1075 (1997)Google Scholar
  48. 48.
    Kikumoto, M., Kurachi, M., Tosa, V., Tashiro, H.: Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Biophys. J. 90, 1687–1696 (2006)Google Scholar
  49. 49.
    van Mameren, J., Vermeulen, K.C., Gittes, F., Schmidt, C.F.: Leveraging single protein polymers to measure flexural rigidity. J. Phys. Chem. B 113, 3837–3844 (2009)Google Scholar
  50. 50.
    de Pablo, P., Schaap, I.A.T., MacKintosh, F.C., Schmidt, C.F.: Deformation and collapse of microtubules on the nanometer scale. Phys. Rev. Lett. 91(9), 098101 (2003)Google Scholar
  51. 51.
    Schaap, I.A., Carrasco, C., dePablo, P.J., MacKintosh, F.C., Schmidt, C.F.: Elastic response buckling, and instability of microtubules under radial indentation, Biophys. J. 91, 1521–1531 (2006)Google Scholar
  52. 52.
    Needleman, D.J., Ojeda-Lopez, M.A., Raviv, U., Ewert, K., Jones, J.B., Miller, H.P., Wilson, L., Safinya, C.R.: Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. Phys. Rev. Lett. 93(19), 198104 (2004)Google Scholar
  53. 53.
    Venier, P., Maggs, A.C., Carlier, M.F., Pantaloni, D.: Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J. Biol. Chem. 269(18), 13353–13360 (1994)Google Scholar
  54. 54.
    Gittes, F., Meyhofer, E., Baek, S., Howard, J.: Directional loading of the kinesin motor molecule as it buckles a microtubule. Biophys. J. 70, 418–429 (1996)Google Scholar
  55. 55.
    Roos, W., Ulmer, J., Gräter, S., Surrey, T., Spatz, J.P.: Microtubule gliding and cross-linked microtubule networks on micropillar interfaces. Nano Lett. 5(12), 2630–2634 (2005)Google Scholar
  56. 56.
    Kawaguchi, K., Ishiwata, S., Yamashita, T.: Temperature dependence of the flexural rigidity of single microtubules. Biochem. Biophys. Res. Commun. 366, 637–642 (2008)Google Scholar
  57. 57.
    Gittes, F., Mickey, B., Nettleton, J., Howard, J.: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–934 (1993)Google Scholar
  58. 58.
    Brangwynne, C.P., Koenderink, G.H., Barry, E., Dogic, Z., MacKintosh, F.C., Weitz, D.A.: Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. Biophys. J. 93(1), 346–359 (2007)Google Scholar
  59. 59.
    Pampaloni, F., Lattanzi, G., Jonas, A., Surrey, T., Frey, E., Florin, E.L.: Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc. Natl. Acad. Sci. USA 103(27), 10248–10253 (2006)Google Scholar
  60. 60.
    Brangwynne, C.P., Koenderink, G.H., MacKintosh, F.C., Weitz, D.A.: Non-equilibrium microtubule fluctuations in a model cytoskeleton. Phys. Rev. Lett. 100, 118104 (2008)Google Scholar
  61. 61.
    Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E., Weitz, D.A.: Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173(5), 733–741 (2006)Google Scholar
  62. 62.
    Chang, L., Goldman, R.D.: Intermediate filaments mediate cytoskeletal crosstalk. Nat. Rev. Mol. Cell Biol. 5, 601–613 (2004)Google Scholar
  63. 63.
    Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A.J., Aebi, U., Forro, L.: Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. J. Mol. Biol. 360(3), 623–630 (2006)Google Scholar
  64. 64.
    Wang, N., Stamenovic, D.: Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell. Motil. 23, 535–540 (2002)Google Scholar
  65. 65.
    Kreplak, L., Bar, H., Leterrier, J.F., Herrmann, H., Aebi, U.: Exploring the mechanical behavior of single intermediate filaments. J. Mol. Biol. 354(3), 569–577 (2005)Google Scholar
  66. 66.
    Kreplak, L., Fudge, D.: Biomechanical properties of intermediate filaments: From tissues to single filaments and back. Bioessays 29(1), 26–35 (2007)Google Scholar
  67. 67.
    Mücke, N., Kreplak, L., Kirmse, R., Wedig, T., Herrmann, H., Aebi, U., Langowski, J.: Assessing the flexibility of intermediate filaments by atomic force microscopy. J. Mol. Biol. 335, 1241–1250 (2004)Google Scholar
  68. 68.
    Fudge, D.S., Gardner, K.H., Forsyth, V.T., Riekel, C., Gosline, J.M.: The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys. J. 85, 2015–2027 (2003)Google Scholar
  69. 69.
    Janmey, P.A., McCormick1, M.E., Rammensee, S., Leight1, J.L., Georges, P.C., MacKintosh, F.C.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007)Google Scholar
  70. 70.
    Gardel, M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P., Weitz, D.A.: Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004)Google Scholar
  71. 71.
    Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C., Janmey, P.A.: Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005)Google Scholar
  72. 72.
    Chaudhuri, O., Parekh, S.H., Fletcher, D.A.: Reversible stress softening of actin networks. Nature 445, 295–298 (2007)Google Scholar
  73. 73.
    Gardel, M.L., Valentine, M.T., Crocker, J.C., Bausch, A.R., Weitz, D.A.: Microrheology of entangled F-actin solutions. Phys. Rev. Lett. 91(15), 158302 (2003)Google Scholar
  74. 74.
    Liu, J., Gardel, M.L., Kroy, K., Frey, E., HoVman, B.D., Crocker, J.C., Bausch, A.R., Weitz, D.A.: Microrheology probes length scale dependent rheology. Phys. Rev. Lett. 96(11), 118104 (2006)Google Scholar
  75. 75.
    Hatami-Marbini, H., Picu, R.C.: Heterogeneous long-range correlated deformation of semiflexible random fiber networks. Phys. Rev. E 80, 046703 (2009)Google Scholar
  76. 76.
    Mofrad, M.R.K.: Rheology of the cytoskeleton. Annu. Rev. Fluid Mech. 41, 433–453 (2009)Google Scholar
  77. 77.
    Crocker, J.C., Valentine, M.T., Weeks, E.R., Gisler, T., Kaplan, P.D., Yodh, A.G., Weitz, D.A.: Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85, 888–891 (2000)Google Scholar
  78. 78.
    Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C., Lubensky, T.C.: Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91(19), 198101 (2003)Google Scholar
  79. 79.
    Band, R.P., Burton, A.C.: Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys. J. 4, 115–135 (1964)Google Scholar
  80. 80.
    Discher, D.E., Boal, D.H., Boey, S.K.: Simulations of the erythrocyte cytoskeleton at large deformation, II. Micropipette aspiration. Biophys. J. 75, 1584–1597 (1998)Google Scholar
  81. 81.
    Hochmuth, R.M.: Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000)Google Scholar
  82. 82.
    Mijailovich, S.M., Kojic, M., Zivkovic, M., Fabry, B., Fredberg, J.J.: A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93, 1429–1436 (2002)Google Scholar
  83. 83.
    Karcher, H., Lammerding, J., Huang, H., Lee, R.T., Kamm, R.D., Kaazempur-Mofrad, M.R.: A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys. J. 85, 3336–3349 (2003)Google Scholar
  84. 84.
    Mack, P.J., Kaazempur-Mofrad, M.R., Karcher, H., Lee, R. T., Kamm, R.D.: Force induced focal adhesion translocation: effects of force amplitude and frequency. Am. J. Physiol. Cell Physiol. 287, C954–C962 (2004)Google Scholar
  85. 85.
    Guilak, F., Haider, M.A., Setton, L.A., Laursen, T.A., Baaijens, F.P.T.: Mutiphasic models for cell mechanics, In: Mofrad, M.R.K., Kamm, R. (eds.), Cytoskeletal mechanics: models and measurements. Cambridge University Press, Cambridge (2006)Google Scholar
  86. 86.
    Desprat, N., Richert, A., Simeon, J., Asnacios, A.: Creep function of a single living cell. Biophys. J. 88, 2224–2233 (2005)Google Scholar
  87. 87.
    Mofrad, M.R.K., Kamm, R.: Cytoskeletal mechanics: models and measurements, Cambridge University Press, Cambridge (2006)Google Scholar
  88. 88.
    Picu, R.C., Hatami-Marbini, H.: Long-range correlations of elastic fields in semi-flexible fiber networks. Comput. Mech. 46(4), 635–640 (2010)zbMATHGoogle Scholar
  89. 89.
    Resch, G.P., Goldie, K.N., Krebs, A., Hoenger, A., Small, J.V.: Visualisation of the actin cytoskeleton by cryo-electron microscopy. J. Cell Sci. 115, 1877–1882 (2002)Google Scholar
  90. 90.
    Hatami-Marbini, H., Picu, R.C.: Modeling the mechanics of semiflexible biopolymer networks: non-affine deformation and presence of long-range correlations, In: Advances in soft matter mechanics (review0029)Google Scholar
  91. 91.
    Head, D.A., Levine, A.J., MacKintosh, F.C.: Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys. Rev. E 68(6), 061907 (2003)Google Scholar
  92. 92.
    Wilhelm, J., Frey, E.: Elasticity of stiff polymer networks. Phys. Rev. Lett. 91(10), 108103 (2003)Google Scholar
  93. 93.
    Onck, P.R., Koeman, T., van Dillen, T., van der Giessen, E.: Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95(17), 178102 (2005)Google Scholar
  94. 94.
    Heussinger, C., Frey, E.: Stiff polymers, foams, and fiber networks. Phys. Rev. Lett. 96(1), 017802 (2006)Google Scholar
  95. 95.
    Hatami-Marbini, H., Picu, R.C.: Scaling of nonaffine deformation in random semiflexible fiber networks. Phys. Rev. E 77, 062103 (2008)Google Scholar
  96. 96.
    Hatami-Marbini, H., Picu, R.C.: Effect of fiber orientation on the non-affine deformation of random fiber networks. Acta Mech. 205, 77–84 (2009)zbMATHGoogle Scholar
  97. 97.
    Stossel, T. P., Condeelis, J., Cooley, L., Hartwig, J. H., Noegel, A., Schleicher, M., Shapiro, S. S.: Filamins as integrators of cell mechanics and signaling, Nat. Rev. Mol. Cell Biol. 2, 138–145 (2001)Google Scholar
  98. 98.
    Furuikea, S., Ito, T., Yamazaki, M.: Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy, FEBS Lett., 498, 72–75 (2001)Google Scholar
  99. 99.
    Yamazaki, M., Furuikea, S., Ito, T.: Mechanical response of single filamin A (ABP-280) molecules and its role in the actin cytoskeleton. J. Muscle Res. Cell Motil. 23, 525–534 (2002)Google Scholar
  100. 100.
    Golji, J., Collins, R., Mofrad, M.R.K.: Molecular mechanics of the alpha-actinin rod domain: bending, torsional, and extensional behavior. PLoS Comput. Biol. 5(5), e1000389, 1–18 (2009)Google Scholar
  101. 101.
    Kolahi, K.S., Mofrad, M.R.K.: Molecular mechanics of filamin rod domain. Biophys. J. 94, 1075–1083 (2008)Google Scholar
  102. 102.
    Kreis, T., Vale, R.: Guidebook to the extracellular matrix, anchor, and adhesion proteins, Oxford University Press, Oxford, 1999Google Scholar
  103. 103.
    Winder, S.J., Ayscough, K.R.: Actin-binding Proteins. J. Cell Sci. 118, 651–654 (2005)Google Scholar
  104. 104.
    Mullins, R.D., Heuser, J.A., Pollard, T.D.: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. 95(11), 6181–6186 (1998)Google Scholar
  105. 105.
    Koenderink, G.H., Dogic, Z., Nakamura, F., Bendix, P.M., MacKintosh, F.C., Hartwig, J.H., Stossel, T.P., Weitz, D.A.: An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci. 106(36), 15192–15197 (2009)Google Scholar
  106. 106.
    Burridge, K., Fath, K., Kelly, T., Nuckolls, G., Turner, C.: Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4, 487–525 (1988)Google Scholar
  107. 107.
    Burridge, K., Chrzanowska-Wodnicka, M.: Focal adhesions, contractility and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–519 (1996)Google Scholar
  108. 108.
    Wechezak, A., Viggers, R., Sauvage, L.: Fibronectin and f-actin redistribution in cultured endothelial cells exposed to shear stress. Lab. Invest. 53, 639–647 (1985)Google Scholar
  109. 109.
    Galbraith, C.G., Skalak, R., Chien, S.: Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40(4), 317–330 (1998)Google Scholar
  110. 110.
    Maniotis, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins, cytoskeletal filaments and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94, 849–854 (1997)Google Scholar
  111. 111.
    Chandran, P.L., Wolf, C.B., Mofrad, M.R.K.: Band-like stress fiber propagation in a continuum and implications for myosin contractile stresses. Cell. Mol. Bioeng. 2(1), 13–27 (2009)Google Scholar
  112. 112.
    Lo, C.-M., Wang, H.-B., Dembo, M., Wang, Y.-L.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)Google Scholar
  113. 113.
    Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P., Ladoux, B.: Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. USA 104, 8281–8286 (2007)Google Scholar
  114. 114.
    Chandran, P.L., Mofrad, M.R.K.: Rods-on-string idealization captures semiflexible filament dynamics. Phys. Rev. E 79, 011906 (2009)MathSciNetGoogle Scholar
  115. 115.
    Chandran, P.L., Mofrad, M.R.K.: Averaged implicit hydrodynamic model of semiflexible filaments. Phys. Rev. E 81, 81(3), 031920 (2010)Google Scholar
  116. 116.
    Lu, L., Oswald, S.J., Ngu, H., Yin, F.C.-P.: Mechanical properties of actin stress fibers in living cells, Biophys. J. 95, 6060–6071 (2008)Google Scholar
  117. 117.
    Sbrana, F., Sassoli, C., Meacci, E., Nosi, D., Squecco, R., Paternostro, F., Tiribilli, B., Zecchi-Orlandini, S., Francini, F., Formigli, L.: Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. Am. J. Physiol. Cell Physiol. 295, C160–C172 (2008)Google Scholar
  118. 118.
    Martens, J. C., Radmacher, M.: Softening of the actin cytoskeleton by inhibition of myosin II, Pflugers Arch Eur. J. Physiol. 456, 95–100 (2008)Google Scholar
  119. 119.
    Sanger, J.M., Mittal, B., Pochapin, M.B., Sanger, J.W.: Stress fiber and cleavage furrow formation in living cells microinjected with fluorescently labeled α-actinin. Cell Motil. Cytoskeleton 7, 209–220 (1987)Google Scholar
  120. 120.
    Edulund, M., Lotano, M.A., Otey, C.A.: Dynamics of α-actinin in focal adhesions and stress fibers visualized with α-actinin-green fluorescent protein. Cell Motil. Cytoskeleton 48, 190–200 (2001)Google Scholar
  121. 121.
    Maddox, A.S., Lewellyn, L., Desai, A., Oegema, K.: Anillin and the septins promote symmetric ingression of the cytokinetic furrow. Dev. Cell 12, 827–835 (2007)Google Scholar
  122. 122.
    Kruse, K., Joanny, J.F., Ju licher, F., Prost, J., Sekimoto, K.: Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 92(7), 078101Google Scholar
  123. 123.
    Backouche, F., Haviv, L., Groswasser, D., Bernheim-Groswasser, A.: Active gels: dynamics of patterning and self-organization. Phys. Biol. 3, 264–273 (2006)Google Scholar
  124. 124.
    Janson, L.W., Taylor, D.L.: In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells. J. Cell Biol. 123, 345–356 (1993)Google Scholar
  125. 125.
    Bendix, P.M., Koenderink, G.H., Cuvelier, D., Dogic, Z., Koeleman, B.N., Brieher, W.M., Field, C.M., Mahadevan, L., Weitz, D.A.: A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J. 94, 3126–3136 (2008)Google Scholar
  126. 126.
    Carlsson, A.E.: Contractile stress generation by actomyosin gels. Phys. Rev. E 74, 051912 (2006)Google Scholar
  127. 127.
    Humphrey, D., Duggan, C., Saha, D., Smith, D., Kas, J.: Active fluidization of polymer networks through molecular motors. Nature 416, 413–416 (2002)Google Scholar
  128. 128.
    Liverpool, T., Maggs, A., Ajdari, A.: Viscoelasticity of solutions of motile polymers. Phys. Rev. Lett. 86, 4171–4174 (2001)Google Scholar
  129. 129.
    Ziebert, F., Aranson, I.: Rheological and structural properties of dilute active filament solutions. Phys. Rev. E 77, 011918 (2008)Google Scholar
  130. 130.
    Mofrad, M.R.K., Kamm, R.D.: Cellular mechanotransduction: diverse perspectives from molecules to tissues, Cambridge University Press, Cambridge (2010)Google Scholar
  131. 131.
    Jaalouk, D.E., Lammerding, J.: Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10(1), 63–73 (2009)Google Scholar
  132. 132.
    Ingber, D.E.: Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20(7), 811–827 (2006)Google Scholar
  133. 133.
    Vogel, V.: Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 25, 459–488 (2006)Google Scholar
  134. 134.
    Barakat, A.I., Gojova, A.: Role of ion channels in cellular mechanotransduction—lessons from the vascular endothelium, In: Mofrad, M.R.K., Kamm, R.D (eds.) Cellular mechanotransduction: diverse perspectives from molecules to tissues, Cambridge University Press, Cambridge (2010)Google Scholar
  135. 135.
    Martinac, B.: Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449–2460 (2004)Google Scholar
  136. 136.
    Perozo, E.: Gating prokaryotic mechanosensitive channels. Nat. Rev. Mol. Cell Biol. 7, 109–119 (2006)Google Scholar
  137. 137.
    Schwartz, G., Droogmans, G., Nilius, B.: Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflugers Arch. 421, 394–396 (1992)Google Scholar
  138. 138.
    Nerem, R.M., Levesque, M.J., Cornhill, J.F.: Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103(3), 172–176 (1981)Google Scholar
  139. 139.
    Pohl, U., Holtz, J., Busse, R., Bessenge, E.: Crucial role of endothelium in the vasodilator response to increased flow in vivo, Hypertension 8, 37–44 (1986)Google Scholar
  140. 140.
    Koller, A., Sun, D., Kaley, G.: Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ. Res. 72, 1276–1284 (1993)Google Scholar
  141. 141.
    Dennerll, T.J., Joshi, H.C., Steel, V.L., Buxbaum, R.E., Heidemann, S.R.: Tension and compression in the cytoskeleton of PC-12 neurites. II: quantitative measurements. J. Cell Biol. 107, 665–674 (1988)Google Scholar
  142. 142.
    Putnam, A.J., Schultz, K., Mooney, D.J.: Control of microtubule assembly by extracellular matrix and externally applied strain. Am. J. Physiol. 280, C556–C564 (2001)Google Scholar
  143. 143.
    Hudspeth, A.: How the ear’s works work: mechanoelectrical transduction and amplification by hair cells. C R Biol. 328(2), 155–162 (2005)Google Scholar
  144. 144.
    Ingber, D.E.: Mechanobiology and diseases of mechanotransduction. Ann. Med. 35(8), 564–577 (2003)Google Scholar
  145. 145.
    Cheng, C., Tempel, D., van Haperen, R., van der Baan, A., Grosveld, F., Daemen, M.J., Krams, R., de Crom, R.: Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113, 2744–2753 (2006)Google Scholar
  146. 146.
    Klein-Nulend, J., Bacabac, R.G., Veldhuijzen, J.P., Van Loon, J.J.: Microgravity and bone cell mechanosensitivity. Adv. Space Res. 32, 1551–1559 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentStanford UniversityStanfordUSA
  2. 2.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations