Nanotechnology Usages for Cellular Adhesion and Traction Forces

Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 4)


Cell mechanobiology studies have incorporated micro- and nanotechnology-based tools to understand the interaction between cells and their surrounding environment. These tools have helped to uncover findings that physical factors in the extracellular matrix can strongly affect important cell functions like proliferation, migration, differentiation, and survival. Here, we review the nanotechnologies that have been used for cellular adhesions and traction forces and the findings that have come at the molecular and protein level.


  1. 1.
    Abercrombie, M., Heaysman, J.E., Pegrum, S.M.: The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp. Cell Res. 67(2), 359–367 (1971)Google Scholar
  2. 2.
    Alberts, B.: Molecular Biology of the Cell, 4th ed. Garland Science, New York (2002)Google Scholar
  3. 3.
    Alenghat, F.J., Ingber, D.E.: Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002(119), pe6 (2002)Google Scholar
  4. 4.
    Alexandrova, A.Y., Arnold, K., Schaub, S., Vasiliev, J.M., Meister, J.J., Bershadsky, A.D., Verkhovsky, A.B.: Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS One 3(9), e3234 (2008)Google Scholar
  5. 5.
    Arnold, M., Cavalcanti-Adam, E.A., Glass, R., Blummel, J., Eck, W., Kantlehner, M., Kessler, H., Spatz, J.P.: Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5(3), 383–388 (2004)Google Scholar
  6. 6.
    Arnold, M., Hirschfeld-Warneken, V.C., Lohmuller, T., Heil, P., Blummel, J., Cavalcanti-Adam, E.A., Lopez-Garcia, M., Walther, P., Kessler, H., Geiger, B., Spatz, J.P.: Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett 8(7), 2063–2069 (2008)Google Scholar
  7. 7.
    Bain, C.D., Whitesides, G.M.: Formation of 2-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols. J. Am. Chem. Society 110(19), 6560–6561 (1988)Google Scholar
  8. 8.
    Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., Geiger, B.: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3(5), 466–472 (2001)Google Scholar
  9. 9.
    Beningo, K.A., Dembo, M., Wang, Y.L.: Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl. Acad. Sci. U.S.A. 101(52), 18024–18029 (2004)Google Scholar
  10. 10.
    Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, Chichester (2000)MATHGoogle Scholar
  11. 11.
    Brock, A., Chang, E., Ho, C.C., LeDuc, P., Jiang, X.Y., Whitesides, G.M., Ingber, D.E.: Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19(5), 1611–1617 (2003)Google Scholar
  12. 12.
    Burton, K., Taylor, D.L.: Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385(6615), 450–454 (1997)Google Scholar
  13. 13.
    Burton, K., Park, J.H., Taylor, D.L.: Keratocytes generate traction forces in two phases. Mol. Biol. Cell 10(11), 3745–3769 (1999)Google Scholar
  14. 14.
    Carter, S.B.: Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208(5016), 1183–1187 (1965)Google Scholar
  15. 15.
    Carter, S.B.: Haptotaxis and the mechanism of cell motility. Nature 213(5073), 256–260 (1967)Google Scholar
  16. 16.
    Cavalcanti-Adam, E.A., Volberg, T., Micoulet, A., Kessler, H., Geiger, B., Spatz, J.P.: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92(8):2964–2974 (2007)Google Scholar
  17. 17.
    Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Geometric control of cell life and death. Science 276(5317), 1425–1428 (1997)Google Scholar
  18. 18.
    Choi, C.K., Vicente-Manzanares, M., Zareno, J., Whitmore, L.A., Mogilner, A., Horwitz, A.R.: Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10(9), 1039–1050 (2008)Google Scholar
  19. 19.
    Choquet, D., Felsenfeld, D.P., Sheetz, M.P.: Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1), 39–48 (1997)Google Scholar
  20. 20.
    Chrzanowska-Wodnicka, M., Burridge, K.: Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133(6), 1403–1415 (1996)Google Scholar
  21. 21.
    Cukierman, E., Pankov, R., Stevens, D.R., Yamada, K.M.: Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001)Google Scholar
  22. 22.
    Curtis, A.S.: The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 20, 199–215 (1964)Google Scholar
  23. 23.
    Curtis, A.S., Forrester, J.V., McInnes, C., Lawrie, F.: Adhesion of cells to polystyrene surfaces. J. Cell Biol. 97(5 Pt 1), 1500–1506 (1983).Google Scholar
  24. 24.
    Dembo, M., Oliver, T., Ishihara, A., Jacobson, K.: Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70(4), 2008–2022 (1996)Google Scholar
  25. 25.
    Dembo, M., Wang, Y.L.: Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76(4), 2307–2316 (1999)Google Scholar
  26. 26.
    Discher, D., Dong, C., Fredberg, J.J., Guilak, F., Ingber, D., Janmey, P., Kamm, R.D., Schmid-Schonbein, G.W., Weinbaum, S.: Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37(5), 847–859 (2009)Google Scholar
  27. 27.
    Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)Google Scholar
  28. 28.
    du Roure, O., Saez, A., Buguin, A., Austin, R.H., Chavrier, P., Silberzan, P., Ladoux, B.: Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005)Google Scholar
  29. 29.
    Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., Discher, D.: Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86(1), 617–628 (2004)Google Scholar
  30. 30.
    Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)Google Scholar
  31. 31.
    Engler, A.J., Carag-Krieger, C., Johnson, C.P., Raab, M., Tang, H.Y., Speicher, D.W., Sanger, J.W., Sanger, J.M., Discher, D.E.: Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121(Pt 22), 3794–3802 (2008)Google Scholar
  32. 32.
    Even-Ram, S., Yamada, K.M.: Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17(5), 524–532 (2005)Google Scholar
  33. 33.
    Even-Ram, S., Doyle, A.D., Conti, M.A., Matsumoto, K., Adelstein, R.S., Yamada, K.M.: Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat. Cell Biol. 9(3), 299–309 (2007)Google Scholar
  34. 34.
    Folkman, J., Moscona, A.: Role of cell shape in growth control. Nature 273(5661), 345–349 (1978)Google Scholar
  35. 35.
    Galbraith, C.G., Sheetz, M.P.: A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl. Acad. Sci. U.S.A. 94(17), 9114–9118 (1997)Google Scholar
  36. 36.
    Galbraith, C.G., Sheetz, M.P.: Forces on adhesive contacts affect cell function. Curr. Opin. Cell Biol. 10(5), 566–571 (1998)Google Scholar
  37. 37.
    Galbraith, C.G., Yamada, K.M., Sheetz, M.P.: The relationship between force and focal complex development. J. Cell Biol. 159(4), 695–705 (2002)Google Scholar
  38. 38.
    Gaudet, C., Marganski, W.A., Kim, S., Brown, C.T., Gunderia, V., Dembo, M., Wong, J.Y.: Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 85(5), 3329–3335 (2003)Google Scholar
  39. 39.
    Geiger, B., Bershadsky, A., Pankov, R., Yamada, K.M.: Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2(11), 793–805 (2001)Google Scholar
  40. 40.
    Geiger, B., Spatz, J.P., Bershadsky, A.D.: Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10(1), 21–33 (2009)Google Scholar
  41. 41.
    Ghibaudo, M., Saez, A., Trichet, L., Xayaphoummine, A., Browaeys, J., Silberzan, P., Buguin, A., Ladoux, B.: Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9), 1836–1843 (2008)Google Scholar
  42. 42.
    Goffin, J.M., Pittet, P., Csucs, G., Lussi, J.W., Meister, J.J., Hinz, B.: Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172(2), 259–268 (2006)Google Scholar
  43. 43.
    Grinnell, F.: Cellular adhesiveness and extracellular substrata. Int. Rev. Cytol. 53, 65–144 (1978)Google Scholar
  44. 44.
    Harris, A.: Behavior of cultured cells on substrata of variable adhesiveness. Exp. Cell Res. 77(1), 285–297 (1973)Google Scholar
  45. 45.
    Harris, A.K., Wild, P., Stopak, D.: Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440), 177–179 (1980)Google Scholar
  46. 46.
    Helfman, D.M., Levy, E.T., Berthier, C., Shtutman, M., Riveline, D., Grosheva, I., Lachish-Zalait, A., Elbaum, M., Bershadsky, A.D.: Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol. Biol. Cell 10(10), 3097–3112 (1999)Google Scholar
  47. 47.
    Hoover, D.K., Chan, E.W., Yousaf, M.N.: Asymmetric peptide nanoarray surfaces for studies of single cell polarization. J. Am. Chem. Soc. 130(11), 3280–3281 (2008)Google Scholar
  48. 48.
    Hynes, R.O.: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1), 11–25 (1992)Google Scholar
  49. 49.
    Ingber, D.E.: Mechanobiology and diseases of mechanotransduction. Ann. Med. 35(8), 564–577 (2003)Google Scholar
  50. 50.
    Inoue, S., Iida, Y., Otani, Y., Hirano, Y., Tabata, Y.: Adhesion behavior of human adipo-stromal cells on self-assembled monolayers with different surface densities or gradients of RGD peptide. J. Biomater. Sci. Polym. Ed. 20(4), 495–510 (2009)Google Scholar
  51. 51.
    Irvine, D.J., Mayes, A.M., Griffith, L.G.: Nanoscale clustering of RGD peptides at surfaces using Comb polymers. 1. Synthesis and characterization of Comb thin films. Biomacromolecules 2(1), 85–94 (2001)Google Scholar
  52. 52.
    Isenberg, B.C., Dimilla, P.A., Walker, M., Kim, S., Wong, J.Y.: Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97(5), 1313–1322 (2009)Google Scholar
  53. 53.
    Jiang, X., Ferrigno, R., Mrksich, M., Whitesides, G.M.: Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 125(9), 2366–2367 (2003)Google Scholar
  54. 54.
    Jiang, X., Bruzewicz, D.A., Wong, A.P., Piel, M., Whitesides, G.M.: Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. U.S.A. 102(4), 975–978 (2005)Google Scholar
  55. 55.
    Kilian, K.A., Bugarija, B., Lahn, B.T., Mrksich, M.: Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 107(11), 4872–4877 (2010)Google Scholar
  56. 56.
    Koo, L.Y., Irvine, D.J., Mayes, A.M., Lauffenburger, D.A., Griffith, L.G.: Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell Sci. 115(Pt 7), 1423–1433 (2002)Google Scholar
  57. 57.
    Kumar, G., Ho, C.C., Co, C.C.: Guiding cell migration using one-way micropattern arrays. Adv. Mater. 19(8), 1084–1090 (2007)Google Scholar
  58. 58.
    Landau, L.D., Lifshits, E.M., Kosevich, A.d.M., Pitaevskii, L.P.: Theory of Elasticity, 3rd English ed. Pergamon Press, Oxford (1986)Google Scholar
  59. 59.
    Lee, G.M., Loeser, R.F.: Cell surface receptors transmit sufficient force to bend collagen fibrils. Exp. Cell Res. 248(1), 294–305 (1999)Google Scholar
  60. 60.
    Lee, J., Leonard, M., Oliver, T., Ishihara, A., Jacobson, K.: Traction forces generated by locomoting keratocytes. J. Cell Biol. 127(6 Pt 2), 1957–1964 (1994)Google Scholar
  61. 61.
    Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., Mrksich, M.: Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560), 1702–1705 (2002)Google Scholar
  62. 62.
    Lele, T.P., Pendse, J., Kumar, S., Salanga, M., Karavitis, J., Ingber, D.E.: Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J. Cell. Physiol. 207(1), 187–194 (2006)Google Scholar
  63. 63.
    Lemmon, C.A., Sniadecki, N.J., Ruiz, S.A., Tan, J.L., Romer, L.H., Chen, C.S.: Shear force at the cell–matrix interface: enhanced analysis for microfabricated post array detectors. Mech. Chem. Biosyst. 2(1), 1–16 (2005)Google Scholar
  64. 64.
    Levental, K.R., Yu, H., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D.L., Weaver, V.M.: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5), 891–906 (2009)Google Scholar
  65. 65.
    Liang, X.M., Han, S.J., Reems, J.A., Gao, D., Sniadecki, N.J.: Platelet retraction force measurements using flexible post force sensors. Lab Chip 10(8), 991–998 (2010)Google Scholar
  66. 66.
    Liedberg, B., Tengvall, P.: Molecular gradients of omega-substituted alkanethiols on gold—preparation and characterization. Langmuir 11(10), 3821–3827 (1995)Google Scholar
  67. 67.
    Liu, L., Ratner, B.D., Sage, E.H., Jiang, S.: Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins. Langmuir 23(22), 11168–11173 (2007)Google Scholar
  68. 68.
    Liu, Z., Tan, J.L., Cohen, D.M., Yang, M.T., Sniadecki, N.J., Ruiz, S.A., Nelson, C.M., Chen, C.S.: Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl. Acad. Sci. U.S.A. 107(22), 9944–9949 (2010)Google Scholar
  69. 69.
    Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79(1), 144–152 (2000)Google Scholar
  70. 70.
    Mack, P.J., Kaazempur-Mofrad, M.R., Karcher, H., Lee, R.T., Kamm, R.D.: Force-induced focal adhesion translocation: effects of force amplitude and frequency. Am. J. Physiol. Cell Physiol. 287(4), C954–C962 (2004)Google Scholar
  71. 71.
    Maheshwari, G., Brown, G., Lauffenburger, D.A., Wells, A., Griffith, L.G.: Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113(Pt 10), 1677–1686 (2000)Google Scholar
  72. 72.
    Maskarinec, S.A., Franck, C., Tirrell, D.A., Ravichandran, G.: Quantifying cellular traction forces in three dimensions. Proc. Natl. Acad. Sci. U.S.A. 106(52), 22108–22113 (2009)Google Scholar
  73. 73.
    McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4), 483–495 (2004)Google Scholar
  74. 74.
    Meshel, A.S., Wei, Q., Adelstein, R.S., Sheetz, M.P.: Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat. Cell Biol. 7(2), 157–164 (2005)Google Scholar
  75. 75.
    Montell, D.J.: Morphogenetic cell movements: diversity from modular mechanical properties. Science 322(5907), 1502–1505 (2008)Google Scholar
  76. 76.
    Mrksich, M., Dike, L.E., Tien, J., Ingber, D.E., Whitesides, G.M.: Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235(2), 305–313 (1997)Google Scholar
  77. 77.
    Munevar, S., Wang, Y., Dembo, M.: Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80(4), 1744–1757 (2001)Google Scholar
  78. 78.
    Nelson, C.M., Jean, R.P., Tan, J.L., Liu, W.F., Sniadecki, N.J., Spector, A.A., Chen, C.S.: Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. U.S.A. 102(33), 11594–11599 (2005)Google Scholar
  79. 79.
    Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., Weaver, V.M.: Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3), 241–254 (2005)Google Scholar
  80. 80.
    Pelham, R.J., Jr., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U.S.A. 94(25), 13661–13665 (1997)Google Scholar
  81. 81.
    Pellegrin, S., Mellor, H.: Actin stress fibres. J. Cell Sci. 120(Pt 20), 3491–3499 (2007)Google Scholar
  82. 82.
    Petty, R.T., Li, H.W., Maduram, J.H., Ismagilov, R., Mrksich, M.: Attachment of cells to islands presenting gradients of adhesion ligands. J. Am. Chem. Soc. 129(29), 8966–8967 (2007)Google Scholar
  83. 83.
    Prime, K.L., Whitesides, G.M.: Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252(5010), 1164–1167 (1991)Google Scholar
  84. 84.
    Rajagopalan, P., Marganski, W.A., Brown, X.Q., Wong, J.Y.: Direct comparison of the spread area, contractility, and migration of balb/c 3T3 fibroblasts adhered to fibronectin- and RGD-modified substrata. Biophys. J. 87(4), 2818–2827 (2004)Google Scholar
  85. 85.
    Reinhart-King, C.A., Dembo, M., Hammer, D.A.: The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89(1), 676–689 (2005)Google Scholar
  86. 86.
    Riveline, D., Zamir, E., Balaban, N.Q., Schwarz, U.S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., Bershadsky, A.D.: Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153(6), 1175–1186 (2001)Google Scholar
  87. 87.
    Ruiz, S.A., Chen, C.S.: Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26(11), 2921–2927 (2008)Google Scholar
  88. 88.
    Saez, A., Buguin, A., Silberzan, P., Ladoux, B.: Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89(6), L52–L54 (2005)Google Scholar
  89. 89.
    Selhuber-Unkel, C., Erdmann, T., Lopez-Garcia, M., Kessler, H., Schwarz, U.S., Spatz, J.P.: Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. Biophys. J. 98(4), 543–551 (2010)Google Scholar
  90. 90.
    Sheetz, M.P., Felsenfeld, D.P., Galbraith, C.G.: Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol. 8(2), 51–54 (1998)Google Scholar
  91. 91.
    Smith, J.T., Tomfohr, J.K., Wells, M.C., Beebe, T.P., Jr., Kepler, T.B., Reichert, W.M.: Measurement of cell migration on surface-bound fibronectin gradients. Langmuir 20(19), 8279–8286 (2004)Google Scholar
  92. 92.
    Smith, J.T., Elkin, J.T., Reichert, W.M.: Directed cell migration on fibronectin gradients: effect of gradient slope. Exp. Cell Res. 312(13), 2424–2432 (2006)Google Scholar
  93. 93.
    Sniadecki, N.J., Desai, R.A., Ruiz, S.A., Chen, C.S.: Nanotechnology for cell–substrate interactions. Ann. Biomed. Eng. 34(1), 59–74 (2006)Google Scholar
  94. 94.
    Sniadecki, N.J., Anguelouch, A., Yang, M.T., Lamb, C.M., Liu, Z., Kirschner, S.B., Liu, Y., Reich, D.H., Chen, C.S.: Magnetic microposts as an approach to apply forces to living cells. Proc. Natl. Acad. Sci. U.S.A. 104(37), 14553–14558 (2007)Google Scholar
  95. 95.
    Spatz, J.P., Mossmer, S., Hartmann, C., Moller, M., Herzog, T., Krieger, M., Boyen, H.G., Ziemann, P., Kabius, B.: Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16(2), 407–415 (2000)Google Scholar
  96. 96.
    Stopak, D., Wessells, N.K., Harris, A.K.: Morphogenetic rearrangement of injected collagen in developing chicken limb buds. Proc. Natl. Acad. Sci. U.S.A. 82(9), 2804–2808 (1985)Google Scholar
  97. 97.
    Tan, J.L., Tien, J., Pirone, D.M., Gray, D.S., Bhadriraju, K., Chen, C.S.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. U.S.A. 100(4), 1484–1489 (2003)Google Scholar
  98. 98.
    Tan, J.L., Liu, W., Nelson, C.M., Raghavan, S., Chen, C.S.: Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng. 10(5–6), 865–872 (2004)Google Scholar
  99. 99.
    Thery, M., Racine, V., Piel, M., Pepin, A., Dimitrov, A., Chen, Y., Sibarita, J.B., Bornens, M.: Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. U.S.A. 103(52), 19771–19776 (2006)Google Scholar
  100. 100.
    Verschueren, H.: Interference reflection microscopy in cell biology: methodology and applications. J. Cell Sci. 75, 279–301 (1985)Google Scholar
  101. 101.
    Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C.K., Horwitz, A.F.: Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176(5), 573–580 (2007)Google Scholar
  102. 102.
    Vicente-Manzanares, M., Ma, X., Adelstein, R.S., Horwitz, A.R.: Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10(11), 778–790 (2009)Google Scholar
  103. 103.
    Wang, N., Butler, J.P., Ingber, D.E.: Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111), 1124–1127 (1993)Google Scholar
  104. 104.
    Wang, Y.L., Pelham, R.J., Jr.: Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298, 489–496 (1998)Google Scholar
  105. 105.
    Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X.Y., Ingber, D.E.: Soft lithography in biology and biochemistry. Ann. Rev. Biomed. Eng. 3, 335–373 (2001)Google Scholar
  106. 106.
    Xia, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)Google Scholar
  107. 107.
    Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R.G., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., Arnaout, M.A.: Crystal structure of the extracellular segment of integrin alpha V beta 3. Science 294(5541), 339–345 (2001)Google Scholar
  108. 108.
    Yang, M.T., Sniadecki, N.J., Chen, C.S.: Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 19(20), 3119–3123 (2007)Google Scholar
  109. 109.
    Yousaf, M.N., Houseman, B.T., Mrksich, M.: Using electroactive substrates to pattern the attachment of two different cell populations. Proc. Natl. Acad. Sci. U.S.A. 98(11), 5992–5996 (2001)Google Scholar
  110. 110.
    Zaman, M.H., Trapani, L.M., Sieminski, A.L., Mackellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A., Matsudaira, P.: Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell–matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. U.S.A. 103(29), 10889–10894 (2006)Google Scholar
  111. 111.
    Zamir, E., Geiger, B.: Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114(Pt 20), 3583–3590 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations