Skip to main content

Structure–Mechanical Property Changes in Nucleus arising from Breast Cancer

  • Chapter
  • First Online:
Cellular and Biomolecular Mechanics and Mechanobiology

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 4))

Abstract

Nuclear mechanics has attracted much attention in recent years, not only because of its functional role in cell biology, but also its structural role in cell mechanics and mechanotransduction. However, little has been done so far to investigate the nuclear mechanics in the context of cancer cells. Here, nanoindentation using an atomic force microscope was used to characterize the elasticity of isolated nuclei of benign (MCF-10A) and malignant (MCF-7) human breast epithelial cells. Isolated nuclei of malignant cells (MCF-7) were found to have an apparent Young’s modulus that is half of the non-malignant cells (MCF-10A). The underlying lamina (lamin A/C) structure of both cell types was also investigated by confocal microscopy to understand its possible contribution to the mechanical property change of nucleus. This study can potentially provide better insights into metastasis, where a possible contributing factor is the softening of cancer cells arising from a more deformable nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosman, F.T.: The nuclear matrix in pathology. Virchows Arch. 435(4), 391–399 (1999)

    Article  Google Scholar 

  2. Broers, J.L., Kuijpers, H.J. et al.: Both lamin A and lamin C mutations cause lamina instability as well as loss of internal nuclear lamin organization. Exp. Cell Res. 304(2), 582–592 (2005)

    Article  Google Scholar 

  3. Broers, J.L., Raymond, Y. et al.: Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am. J. Pathol. 143(1), 211–220 (1993)

    Google Scholar 

  4. Broers, J.L.V., Peeters, E.A.G. et al.: Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet. 13(21), 2567–2580 (2004)

    Article  Google Scholar 

  5. Caille, N., Thoumine, O. et al.: Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35(2), 177–187 (2002)

    Article  Google Scholar 

  6. Coradeghini, R., Barboro, P. et al.: Differential expression of nuclear lamins in normal and cancerous prostate tissues. Oncol. Rep. 15(3), 609–613 (2006)

    Google Scholar 

  7. Costa, K.D.: Single-cell elastography: probing for disease with the atomic force microscope. Dis. Markers 19(2–3), 139–154 (2003)

    Google Scholar 

  8. Dahl, K.N., Engler, A.J. et al.: Power–law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89(4), 2855–2864 (2005)

    Article  Google Scholar 

  9. Dahl, K.N., Kahn, S.M. et al.: The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117(Pt 20), 4779–4786 (2004)

    Article  Google Scholar 

  10. Dahl, K.N., Ribeiro, A.J. et al.: Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102(11), 1307–1318 (2008)

    Article  Google Scholar 

  11. Dahl, K.N., Scaffidi, P., et al.: Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 103(27), 10271–10276 (2006)

    Article  Google Scholar 

  12. Deguchi, S., Maeda, K., et al.: Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. J. Biomech. 38(9), 1751–1759 (2005)

    Article  Google Scholar 

  13. Dong, C., Skalak, R., et al.: Cytoplasmic rheology of passive neutrophils. Biorheology 28(6), 557–567 (1991)

    Google Scholar 

  14. Goldman, R.D., Gruenbaum, Y., et al.: (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16(5), 533–547.

    Article  Google Scholar 

  15. Guilak, F., Tedrow, J.R., et al. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269(3), 781–786 (2000)

    Article  Google Scholar 

  16. Hou, H.W., Li, Q.S., et al.: Deformability study of breast cancer cells using microfluidics. Biomed. Microdev. 11(3), 557–564 (2009)

    Article  MathSciNet  Google Scholar 

  17. Hozak, P., Sasseville, A., et al.: Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci. 108(2), 635–644 (1995)

    Google Scholar 

  18. Hutchison, C.J.: Lamins: building blocks or regulators of gene expression? Nat. Rev. Mol. Cell Biol. 3(11), 848–858 (2002)

    Article  Google Scholar 

  19. Kaufmann, S.H., Mabry, M., et al.: Differential expression of nuclear envelope lamins A and C in human lung cancer cell lines. Cancer Res. 51(2), 581–586 (1991)

    Google Scholar 

  20. Lammerding, J., Dahn, K.N., Discher, D.E., Kamm, R.D.: Nuclear mechanics and methods. Methods Cell Biol 83, 269–294 (2007)

    Google Scholar 

  21. Lammerding, J., Fong, L.G., et al.: Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281(35), 25768–25780 (2006)

    Article  Google Scholar 

  22. Lammerding, J., Schulze, P.C., et al.: Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113(3), 370–378 (2004)

    Google Scholar 

  23. Lee, J.S.H., Hale, C.M., et al.: Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93(7), 2542–2552 (2007)

    Article  Google Scholar 

  24. Li, Q.S., Lee, G.Y., et al.: AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374(4), 609–613 (2008)

    Article  MathSciNet  Google Scholar 

  25. Machiels, B.M., Ramaekers, F.C., et al.: Nuclear lamin expression in normal testis and testicular germ cell tumours of adolescents and adults. J. Pathol. 182(2), 197–204 (1997)

    Article  Google Scholar 

  26. Maniotis, A.J., Chen, C.S., et al.: Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94(3), 849–854 (1997)

    Article  Google Scholar 

  27. Meaburn, K.J., Misteli, T.: Cell biology: Chromosome territories. Nature 445(7126), 379–381 (2007)

    Article  Google Scholar 

  28. Mihailovic, D., Dordevic, B., et al.: Nuclear volume in type I gastric intestinal metaplasia. Anal. Quant. Cytol. Histol. 21(2), 143–144 (1999)

    Google Scholar 

  29. Moir, R.D., Yoon, M., et al.: Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151(6), 1155–1168 (2000)

    Article  Google Scholar 

  30. Moss, S.F., Krivosheyev, V., et al.: Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms. Gut 45(5), 723–729 (1999)

    Article  Google Scholar 

  31. Oguchi, M., Sagara, J., et al.: Expression of lamins depends on epidermal differentiation and transformation. Br. J. Dermatol. 147(5), 853–858 (2002)

    Article  Google Scholar 

  32. Pajerowski, J.D., Dahl, K.N., et al.: Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. USA 104(40), 15619–15624 (2007)

    Article  Google Scholar 

  33. Parnaik, V.K., Manju, K.: Laminopathies: multiple disorders arising from defects in nuclear architecture. J. Biosci. 31(3), 405–421 (2006)

    Article  Google Scholar 

  34. Prokocimer, M., Margalit, A., et al.: The nuclear lamina and its proposed roles in tumorigenesis: projection on the hematologic malignancies and future targeted therapy. J. Struct. Biol. 155(2), 351–360 (2006)

    Article  Google Scholar 

  35. Rowat, A.C., Foster, L.J., et al.: Characterization of the elastic properties of the nuclear envelope. J. R. Soc. Interface 2(2), 63–69 (2005)

    Article  Google Scholar 

  36. Scaffidi, P., Misteli, T.: Lamin A-dependent nuclear defects in human aging. Science 312(5776), 1059–1063 (2006)

    Article  Google Scholar 

  37. Stewart, C.L., Roux, K.J., et al.: Blurring the boundary: the nuclear envelope extends its reach. Science 318(5855), 1408–1412 (2007)

    Article  Google Scholar 

  38. Stuurman, N., Heins, S., et al.: Nuclear lamins: their structure, assembly, and interactions. J. Struct. Biol. 122(1–2), 42–66 (1998)

    Article  Google Scholar 

  39. Sugitate, T., Kihara, T., et al.: Mechanical role of the nucleus in a cell in terms of elastic modulus. Curr. Appl. Phys. 9(4), e291–e293 (2009)

    Article  Google Scholar 

  40. Thoumine, O., Ott, A., et al.: Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods 39(1–2), 47–62 (1999)

    Article  Google Scholar 

  41. Tseng, Y., Lee, J.S.H., et al.: Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J. Cell Sci. 117(10), 2159–2167 (2004)

    Article  Google Scholar 

  42. Vaziri, A., Lee, H. et al.: Deformation of the cell nucleus under indentation: mechanics and mechanisms. J. Mater. Res. 21(8), 2126–2135 (2006)

    Article  Google Scholar 

  43. Vaziri, A., Mofrad, M.R.: Mechanics and deformation of the nucleus in micropipette aspiration experiment. J. Biomech. 40(9), 2053–2062 (2007)

    Article  Google Scholar 

  44. Venables, R.S., McLean, S., et al.: Expression of individual lamins in basal cell carcinomas of the skin. Br. J. Cancer 84(4), 512–519 (2001)

    Article  Google Scholar 

  45. Verstraeten, V., Lammerding, J.: Experimental techniques for study of chromatin mechanics in intact nuclei and living cells. Chromosome Res. 16(3), 499–510 (2008)

    Article  Google Scholar 

  46. Yamauchi, K., Yang, M., et al.: Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res. 65(10), 4246–4252 (2005)

    Article  Google Scholar 

  47. Zink, D., Fischer, A.H., et al.: Nuclear structure in cancer cells. Nat. Rev. Cancer 4(9), 677–687 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chwee Teck Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Q., Lim, C.T. (2010). Structure–Mechanical Property Changes in Nucleus arising from Breast Cancer. In: Gefen, A. (eds) Cellular and Biomolecular Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_19

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14217-8

  • Online ISBN: 978-3-642-14218-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics